Menu Close

Etiqueta: Grafos

Caminos en un grafo

Definir las funciones

   grafo   :: [(Int,Int)] -> Grafo Int Int
   caminos :: Grafo Int Int -> Int -> Int -> [[Int]]

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,
     ghci> grafo [(2,4),(4,5)]
     G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7)
     [[1,3,5,7],[1,3,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7)
     [[2,5,3,7],[2,5,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2)
     [[1,3,5,2],[1,3,7,5,2]]
     ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
     []
     ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
     109601

Soluciones

import Data.List (sort)
import I1M.Grafo
import I1M.BusquedaEnEspaciosDeEstados
 
grafo :: [(Int,Int)] -> Grafo Int Int
grafo as = creaGrafo ND (m,n) [(x,y,0) | (x,y) <- as]
  where ns = map fst as ++ map snd as
        m  = minimum ns
        n  = maximum ns
 
-- 1ª solución
-- ===========
 
caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos g a b = aux [[b]] where 
  aux [] = []
  aux ((x:xs):yss)
    | x == a    = (x:xs) : aux yss
    | otherwise = aux ([z:x:xs | z <- adyacentes g x
                               , z `notElem` (x:xs)] 
                       ++ yss) 
 
-- 2ª solución (mediante espacio de estados)
-- =========================================
 
caminos2 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos2 g a b = buscaEE sucesores esFinal inicial
  where inicial          = [b]
        sucesores (x:xs) = [z:x:xs | z <- adyacentes g x
                                   , z `notElem` (x:xs)] 
        esFinal (x:xs)   = x == a
 
-- Comparación de eficiencia
-- =========================
 
--    ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
--    109601
--    (3.57 secs, 500533816 bytes)
--    ghci> length (caminos2 (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
--    109601
--    (3.53 secs, 470814096 bytes)

Grafo de divisibilidad

El grafo de divisibilidad de orden n es el grafo cuyos nodos son los números naturales entre 1 y n, cuyas aristas son los pares (x,y) tales que x divide a y o y divide a x. El coste de cada arista es el cociente entre su mayor y menor elemento.

Definir las siguientes funciones:

   grafoDivisibilidad :: Int -> Grafo Int Int
   coste              :: Int -> Int

tales que

  • (grafoDivisibilidad n) es el grafo de divisibilidad de orden n. Por ejemplo,
      λ> grafoDivisibilidad 12
      G ND (array (1,12)
                  [(1,[(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),
                       (8,8),(9,9),(10,10),(11,11),(12,12)]),
                   (2,[(1,2),(4,2),(6,3),(8,4),(10,5),(12,6)]),
                   (3,[(1,3),(6,2),(9,3),(12,4)]),
                   (4,[(1,4),(2,2),(8,2),(12,3)]),
                   (5,[(1,5),(10,2)]),
                   (6,[(1,6),(2,3),(3,2),(12,2)]),
                   (7,[(1,7)]),
                   (8,[(1,8),(2,4),(4,2)]),
                   (9,[(1,9),(3,3)]),
                   (10,[(1,10),(2,5),(5,2)]),
                   (11,[(1,11)]),
                   (12,[(1,12),(2,6),(3,4),(4,3),(6,2)])])
  • (coste n) es el coste del árbol de expansión mínimo del grafo de divisibilidad de orden n. Por ejemplo,
      coste 12        ==  41
      coste 3000      ==  605305
      coste (2*10^5)  ==  1711798835

Soluciones

Caminos en un grafo

Definir las funciones

   grafo   :: [(Int,Int)] -> Grafo Int Int
   caminos :: Grafo Int Int -> Int -> Int -> [[Int]]

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,
     ghci> grafo [(2,4),(4,5)]
     G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7)
     [[1,3,5,7],[1,3,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7)
     [[2,5,3,7],[2,5,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2)
     [[1,3,5,2],[1,3,7,5,2]]
     ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
     []
     ghci> length (caminos (grafo [(i,j) | i < - [1..10], j <- [i..10]]) 1 10)
     109601

Soluciones

Reconocimiento de camino en un grafo

Dado un grafo no dirigido G, un camino en G es una secuencia de nodos [v(1),v(2),v(3),…,v(n)] tal que para todo i entre 1 y n-1, (v(i),v(i+1)) es una arista de G. Por ejemplo, dados los grafos

   g1, g2 :: Grafo Int Int
   g1 = creaGrafo ND (1,3) [(1,2,0),(1,3,0),(2,3,0)]
   g2 = creaGrafo ND (1,4) [(1,2,0),(1,3,0),(1,4,0),(2,4,0),(3,4,0)]

la lista [1,2,3] es un camino en g1, pero no es un camino en g2 puesto que la arista (2,3) no existe en g2.

Definir la función

   camino :: Grafo Int Int -> [Int] -> Bool

tal que (camino g vs) se verifica si la lista de nodos vs es un camino en el grafo g. Por ejemplo,

   camino g1 [1,2,3]  ==  True
   camino g2 [1,2,3]  ==  False

Nota: Este ejercicio debe realizarse usando únicamente las funciones de la librería de grafos (I1M.Grafo) que se describe aquí y se encuentra aquí.

Soluciones

Representaciones de grafos

Los grafos no dirigidos puede representarse mediante matrices de adyacencia y también mediante listas de adyacencia. Por ejemplo, el grafo

   1 ----- 2
   | \     |
   |  3    |
   | /     |
   4 ----- 5

se puede representar por la matriz de adyacencia

   |0 1 1 1 0|
   |1 0 0 0 1|
   |1 0 0 1 0|
   |1 0 1 0 1|
   |0 1 0 1 0|

donde el elemento (i,j) es 1 si hay una arista entre los vértices i y j y es 0 si no la hay. También se puede representar por la lista de adyacencia

   [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]

donde las primeras componentes son los vértices y las segundas la lista de los vértices conectados.

Definir las funciones

   matrizAlista :: Matrix Int -> [(Int,[Int])]
   listaAmatriz :: [(Int,[Int])] -> Matrix Int

tales que

  • (matrizAlista a) es la lista de adyacencia correspondiente a la matriz de adyacencia a. Por ejemplo, definiendo la matriz anterior por
     ejMatriz :: Matrix Int
     ejMatriz = fromLists [[0,1,1,1,0],
                           [1,0,0,0,1],
                           [1,0,0,1,0],
                           [1,0,1,0,1],
                           [0,1,0,1,0]]

se tiene que

     λ> matrizAlista ejMatriz
     [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
  • (listaAmatriz ps) es la matriz de adyacencia correspondiente a la lista de adyacencia ps. Por ejemplo,
     λ> listaAmatriz [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
     ( 0 1 1 1 0 )
     ( 1 0 0 0 1 )
     ( 1 0 0 1 0 )
     ( 1 0 1 0 1 )
     ( 0 1 0 1 0 )
     λ> matrizAlista it
     [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]

Soluciones

import Data.List (sort)
import Data.Matrix
 
ejMatriz :: Matrix Int
ejMatriz = fromLists [[0,1,1,1,0],
                      [1,0,0,0,1],
                      [1,0,0,1,0],
                      [1,0,1,0,1],
                      [0,1,0,1,0]]
 
matrizAlista :: Matrix Int -> [(Int,[Int])]
matrizAlista a = 
  [(i,[j | j <- [1..n], a!(i,j) == 1]) | i <- [1..n]]
  where n = nrows a
 
listaAmatriz :: [(Int,[Int])] -> Matrix Int
listaAmatriz ps = fromLists [fila n xs | (_,xs) <- sort ps]
  where n = length ps
        fila n xs = [f i | i <- [1..n]]
          where f i | i `elem` xs = 1
                    | otherwise   = 0

Caminos en un grafo

Definir las funciones

   grafo   :: [(Int,Int)] -> Grafo Int Int
   caminos :: Grafo Int Int -> Int -> Int -> [[Int]]

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,
     ghci> grafo [(2,4),(4,5)]
     G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7)
     [[1,3,5,7],[1,3,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7)
     [[2,5,3,7],[2,5,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2)
     [[1,3,5,2],[1,3,7,5,2]]
     ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
     []
     ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
     109601

Soluciones

import Data.List (sort)
import I1M.Grafo
import I1M.BusquedaEnEspaciosDeEstados
 
grafo :: [(Int,Int)] -> Grafo Int Int
grafo as = creaGrafo ND (m,n) [(x,y,0) | (x,y) <- as]
    where ns = map fst as ++ map snd as
          m  = minimum ns
          n  = maximum ns
 
-- 1ª solución
-- ===========
 
caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos g a b = aux [[b]] where 
    aux [] = []
    aux ((x:xs):yss)
        | x == a    = (x:xs) : aux yss
        | otherwise = aux ([z:x:xs | z <- adyacentes g x
                                   , z `notElem` (x:xs)] 
                           ++ yss) 
 
-- 2ª solución (mediante espacio de estados)
-- =========================================
 
caminos2 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos2 g a b = buscaEE sucesores esFinal inicial
    where inicial          = [b]
          sucesores (x:xs) = [z:x:xs | z <- adyacentes g x
                                     , z `notElem` (x:xs)] 
          esFinal (x:xs)   = x == a
 
-- Comparación de eficiencia
-- =========================
 
--    ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
--    109601
--    (3.57 secs, 500533816 bytes)
--    ghci> length (caminos2 (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
--    109601
--    (3.53 secs, 470814096 bytes)

Grafo de divisibilidad

El grafo de divisibilidad de orden n es el grafo cuyos nodos son los números naturales entre 1 y n, cuyas aristas son los pares (x,y) tales que x divide a y o y divide a x. El coste de cada arista es el cociente entre su mayor y menor elemento.

Definir las siguientes funciones:

   grafoDivisibilidad :: Int -> Grafo Int Int
   coste              :: Int -> Int

tales que

  • (grafoDivisibilidad n) es el grafo de divisibilidad de orden n. Por ejemplo,
      λ> grafoDivisibilidad 12
      G ND (array (1,12)
                  [(1,[(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),
                       (8,8),(9,9),(10,10),(11,11),(12,12)]),
                   (2,[(1,2),(4,2),(6,3),(8,4),(10,5),(12,6)]),
                   (3,[(1,3),(6,2),(9,3),(12,4)]),
                   (4,[(1,4),(2,2),(8,2),(12,3)]),
                   (5,[(1,5),(10,2)]),
                   (6,[(1,6),(2,3),(3,2),(12,2)]),
                   (7,[(1,7)]),
                   (8,[(1,8),(2,4),(4,2)]),
                   (9,[(1,9),(3,3)]),
                   (10,[(1,10),(2,5),(5,2)]),
                   (11,[(1,11)]),
                   (12,[(1,12),(2,6),(3,4),(4,3),(6,2)])])
  • (coste n) es el coste del árbol de expansión mínimo del grafo de divisibilidad de orden n. Por ejemplo,
      coste 12        ==  41
      coste 3000      ==  605305
      coste (2*10^5)  ==  1711798835

Soluciones

import Data.Ix
import Data.List (delete, sort)
import qualified Data.Set as S
import I1M.Grafo
import I1M.Tabla
import Data.Numbers.Primes (primeFactors)
 
grafoDivisibilidad :: Int -> Grafo Int Int
grafoDivisibilidad n =
  creaGrafo ND (1,n) [(x,y,y `div` x) | y <- [1..n]
                                      , x <- [1..y-1]
                                      , y `mod` x == 0]
 
-- 1ª solución (con el algoritmo de Kruskal)
-- =========================================
 
coste1 :: Int -> Int
coste1 n = sum [p | (p,x,y) <- kruskal (grafoDivisibilidad n)]
 
-- (kruskal g) es el árbol de expansión mínimo del grafo g calculado
-- mediante el algoritmo de Kruskal. Por ejemplo,
--    λ> kruskal (grafoDivisibilidad 12)
--    [(11,1,11),(7,1,7),(5,1,5),(3,3,9),(3,1,3),(2,6,12),(2,5,10),
--     (2,4,8),(2,3,6),(2,2,4),(2,1,2)]
kruskal :: (Ix v, Num p, Ord p) => Grafo v p -> [(p,v,v)]
kruskal g = kruskal' cola                           -- Cola ordenada
                     (tabla [(x,x) | x <- nodos g]) -- Tabla de raices
                     []                             -- Árbol de expansión
                     (length (nodos g) - 1)         -- Aristas por
                                                    -- colocar
    where cola = sort [(p,x,y) | (x,y,p) <- aristas g]
 
kruskal' ((p,x,y):as) t ae n 
  | n == 0      = ae
  | actualizado = kruskal' as t' ((p,x,y):ae) (n-1)
  | otherwise   = kruskal' as t  ae           n
  where (actualizado,t') = buscaActualiza (x,y) t
 
-- (raiz t n) es la raíz de n en la tabla t. Por ejemplo,
--    raiz (crea [(1,1),(3,1),(4,3),(5,4),(2,6),(6,6)]) 5  == 1
--    raiz (crea [(1,1),(3,1),(4,3),(5,4),(2,6),(6,6)]) 2  == 6
raiz:: Eq n => Tabla n n -> n -> n
raiz t x | v == x    = v
         | otherwise = raiz t v
         where v = valor t x
 
-- (buscaActualiza a t) es el par formado por False y la tabla t, si los
-- dos vértices de la arista a tienen la misma raíz en t y el par
-- formado por True y la tabla obtenida añadiéndole a t la arista
-- formada por el vértice de a de mayor raíz y la raíz del vértice de
-- a de menor raíz. Por ejemplo,
--    ghci> let t = crea [(1,1),(2,2),(3,1),(4,1)]
--    ghci> buscaActualiza (2,3) t
--    (True,Tbl [(1,1),(2,1),(3,1),(4,1)])
--    ghci> buscaActualiza (3,4) t
--    (False,Tbl [(1,1),(2,2),(3,1),(4,1)])
buscaActualiza :: (Eq n, Ord n) => (n,n) -> Tabla n n -> (Bool,Tabla n n)
buscaActualiza (x,y) t 
  | x' == y'  = (False, t) 
  | y' <  x'  = (True, modifica (x,y') t)
  | otherwise = (True, modifica (y,x') t)
  where x' = raiz t x 
        y' = raiz t y
 
-- 2ª solución (con el algoritmo de Prim)
-- ======================================
 
coste2 :: Int -> Int
coste2 n = sum [p | (p,x,y) <- prim (grafoDivisibilidad n)]
 
-- (prim g) es el árbol de expansión mínimo del grafo g calculado
-- mediante el algoritmo de Prim. Por ejemplo,
--    λ> prim (grafoDivisibilidad 12)
--    [(11,1,11),(7,1,7),(2,5,10),(5,1,5),(3,3,9),(2,6,12),(2,3,6),
--     (3,1,3),(2,4,8),(2,2,4),(2,1,2)]
prim :: (Ix v, Num p, Ord p) => Grafo v p -> [(p,v,v)]
prim g = prim' [n]              -- Nodos colocados
               ns               -- Nodos por colocar 
               []               -- Árbol de expansión
               (aristas g)      -- Aristas del grafo
         where (n:ns) = nodos g
 
prim' t [] ae as = ae
prim' t r  ae as = prim' (v':t) (delete v' r) (e:ae) as
  where e@(c,u', v') = minimum [(c,u,v)| (u,v,c) <- as,
                                         u `elem` t, 
                                         v `elem` r]
 
-- 3ª solución (con el algoritmo de Prim con conjuntos)
-- ====================================================
 
coste3 :: Int -> Int
coste3 n = sum [p | (p,x,y) <- prim2 (grafoDivisibilidad n)]
 
-- (prim2 g) es el árbol de expansión mínimo del grafo g calculado
-- mediante el algoritmo de Prim. Por ejemplo,
--    λ> prim2 (grafoDivisibilidad 12)
--    [(11,1,11),(7,1,7),(2,5,10),(5,1,5),(3,3,9),(2,6,12),(2,3,6),
--     (3,1,3),(2,4,8),(2,2,4),(2,1,2)]
prim2 :: (Ix v, Num p, Ord p) => Grafo v p -> [(p,v,v)]
prim2 g = prim2' (S.singleton n)  -- Nodos colocados
                 (S.fromList ns)  -- Nodos por colocar 
                 []               -- Árbol de expansión
                 (aristas g)      -- Aristas del grafo
  where (n:ns) = nodos g
 
prim2' t r ae as
  | S.null r  = ae
  | otherwise = prim2' (S.insert v' t)
                       (S.delete v' r)
                       (e:ae)
                       as
  where e@(c,u', v') = minimum [(c,u,v)| (u,v,c) <- as,
                                         S.member u t, 
                                         S.member v r]
 
-- 4ª solución
-- ===========
 
coste4 :: Int -> Int
coste4 n = sum [head (primeFactors x) | x <- [2..n]]
 
-- Comparación de eficiencia
-- =========================
 
--    λ> coste1 400
--    14923
--    (0.08 secs, 31,336,440 bytes)
--    λ> coste2 400
--    14923
--    (4.54 secs, 220,745,608 bytes)
--    λ> coste3 400
--    14923
--    (0.69 secs, 217,031,144 bytes)
--    λ> coste4 400
--    14923
--    (0.01 secs, 2,192,336 bytes)
--    
--    λ> coste1 2000
--    284105
--    (2.09 secs, 842,601,904 bytes)
--    λ> coste4 2000
--    284105
--    (0.02 secs, 14,586,888 bytes)

Caminos en un grafo

Definir las funciones

   grafo   :: [(Int,Int)] -> Grafo Int Int
   caminos :: Grafo Int Int -> Int -> Int -> [[Int]]

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,
     ghci> grafo [(2,4),(4,5)]
     G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7)
     [[1,3,5,7],[1,3,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7)
     [[2,5,3,7],[2,5,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2)
     [[1,3,5,2],[1,3,7,5,2]]
     ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
     []
     ghci> length (caminos (grafo [(i,j) | i < - [1..10], j <- [i..10]]) 1 10)
     109601

Nota: Este ejercicio debe realizarse usando únicamente las funciones de la librería de grafos (I1M.Grafo) que se describe aquí y se encuentra aquí.

Soluciones

Grafo de divisibilidad

El grafo de divisibilidad de orden n es el grafo cuyos nodos son los números naturales entre 1 y n, cuyas aristas son los pares (x,y) tales que x divide a y o y divide a x y el coste de cada arista es el cociente entre su mayos y menor elemento.

Definir las siguientes funciones:

   grafoDivisibilidad :: Int -> Grafo Int Int
   coste :: Int -> Int

tales que

  • (grafoDivisibilidad n) es el grafo de divisibilidad de orden n. Por ejemplo,
      λ> grafoDivisibilidad 12
      G ND (array (1,12)
                  [(1,[(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),
                       (8,8),(9,9),(10,10),(11,11),(12,12)]),
                   (2,[(1,2),(4,2),(6,3),(8,4),(10,5),(12,6)]),
                   (3,[(1,3),(6,2),(9,3),(12,4)]),
                   (4,[(1,4),(2,2),(8,2),(12,3)]),
                   (5,[(1,5),(10,2)]),
                   (6,[(1,6),(2,3),(3,2),(12,2)]),
                   (7,[(1,7)]),
                   (8,[(1,8),(2,4),(4,2)]),
                   (9,[(1,9),(3,3)]),
                   (10,[(1,10),(2,5),(5,2)]),
                   (11,[(1,11)]),
                   (12,[(1,12),(2,6),(3,4),(4,3),(6,2)])])
  • (coste n) es el coste del árbol de expansión mínimo del grafo de divisibilidad de orden n. Por ejemplo,
      coste 12    ==  41
      coste 3000  ==  605305

Soluciones

Grafo complemenario

El complementario del grafo G es un grafo G’ del mismo tipo que G (dirigido o no dirigido), con el mismo conjunto de nodos y tal que dos nodos de G’ son adyacentes si y sólo si no son adyacentes en G. Los pesos de todas las aristas del complementario es igual a 0.

Definir la función

   complementario :: Grafo Int Int -> Grafo Int Int

tal que (complementario g) es el complementario de g. Por ejemplo,

   λ> complementario (creaGrafo D (1,3) [(1,3,0),(3,2,0),(2,2,0),(2,1,0)])
   G D (array (1,3) [(1,[(1,0),(2,0)]),(2,[(3,0)]),(3,[(1,0),(3,0)])])
   λ> complementario (creaGrafo D (1,3) [(3,2,0),(2,2,0),(2,1,0)])
   G D (array (1,3) [(1,[(1,0),(2,0),(3,0)]),(2,[(3,0)]),(3,[(1,0),(3,0)])])

Nota: Se usa el módulo Grafo de la librería de I1M o cualquiera de las implementaciones de grafos (GrafoConVectorDeAdyacencia o GrafoConMatrizDeAdyacencia).

Soluciones