Aproximación entre pi y e

El día 11 de noviembre, se publicó en la cuenta de Twitter de Fermat’s Library la siguiente curiosa identidad que relaciona los números e y pi:

Definir las siguientes funciones:

tales que

  • (sumaTerminos n) es la suma de los primeros n términos de la serie 1/(π²+ 1) + 1/(4π²+1) + 1/(9π²+1) + 1/(16π²+ ) + … Por ejemplo,

  • (aproximación x) es el menor número de términos que hay que sumar de la serie anterior para que se diferencie (en valor absoluto) de 1/(e²-1) menos que x. Por ejemplo,

Soluciones

Pensamiento

«Sólo sé que no se nada» contenía la jactancia de un excesivo saber, puesto que olvidó añadir: y aun de esto mismo no estoy completamente seguro.

Antonio Machado

Número de dígitos del factorial

Definir las funciones

tales que

  • (nDigitosFact n) es el número de dígitos de n!. Por ejemplo,

  • (graficas xs) dibuja las gráficas de los números de dígitos del factorial de k (para k en xs) y de la recta y = 5.5 x. Por ejemplo, (graficas [0,500..10^6]) dibuja
    Numero_de_digitos_del_factorial

Nota: Este ejercicio está basado en el problema How many digits? de Kattis en donde se impone la restricción de calcular, en menos de 1 segundo, el número de dígitos de los factoriales de 10.000 números del rango [0,1.000.000].

Se puede simular como sigue

Soluciones