Menu Close

Etiqueta: chooseInt

Ordenada cíclicamente

Se dice que una sucesión x(1), …, x(n) está ordenada cíclicamente si existe un índice i tal que la sucesión

   x(i), x(i+1), ..., x(n), x(1), ..., x(i-1)

está ordenada crecientemente de forma estricta.

Definir la función

   ordenadaCiclicamente :: Ord a => [a] -> Maybe Int

tal que (ordenadaCiclicamente xs) es el índice a partir del cual está ordenada, si la lista está ordenado cíclicamente y Nothing en caso contrario. Por ejemplo,

   ordenadaCiclicamente [1,2,3,4]      ==  Just 0
   ordenadaCiclicamente [5,8,1,3]      ==  Just 2
   ordenadaCiclicamente [4,6,7,5,1,3]  ==  Nothing
   ordenadaCiclicamente [1,0,3,2]      ==  Nothing
   ordenadaCiclicamente [1,2,0]        ==  Just 2
   ordenadaCiclicamente "cdeab"        ==  Just 3

Nota: Se supone que el argumento es una lista no vacía sin elementos repetidos.

Elementos de una matriz con algún vecino menor

Las matrices pueden representarse mediante tablas cuyos índices son pares de números naturales. Su tipo se define por

   type Matriz = Array (Int,Int) Int

Por ejemplo, la matriz

   |9 4 6 5|
   |8 1 7 3|
   |4 2 5 4|

se define por

   ej :: Matriz
   ej = listArray ((1,1),(3,4)) [9,4,6,5,8,1,7,3,4,2,5,4]

Los vecinos de un elemento son los que están a un paso en la misma fila, columna o diagonal. Por ejemplo, en la matriz anterior, el 1 tiene 8 vecinos (el 9, 4, 6, 8, 7, 4, 2 y 5) pero el 9 sólo tiene 3 vecinos (el 4, 8 y 1).

Definir la función

   algunoMenor :: Matriz -> [Int]

tal que (algunoMenor p) es la lista de los elementos de p que tienen algún vecino menor que él. Por ejemplo,

   algunoMenor ej == [9,4,6,5,8,7,4,2,5,4]

pues sólo el 1 y el 3 no tienen ningún vecino menor en la matriz.

Soluciones

import Data.Array (Array, (!), bounds, indices, inRange, listArray)
import Test.QuickCheck (Arbitrary, Gen, arbitrary, chooseInt, quickCheck,
                        vectorOf)
 
type Matriz = Array (Int,Int) Int
 
ej :: Matriz
ej = listArray ((1,1),(3,4)) [9,4,6,5,8,1,7,3,4,2,5,4]
 
type Pos = (Int,Int)
 
-- 1ª solución
-- ===========
 
algunoMenor1 :: Matriz -> [Int]
algunoMenor1 a =
  [a!p| p <- indices a,
        any (< a!p) (vecinos1 a p)]
 
-- (vecinos q p) es la lista de los vecinos en la matriz a de la
-- posición p. Por ejemplo,
--    vecinos1 ej (2,2)  ==  [9,4,6,8,7,4,2,5]
--    vecinos1 ej (1,1)  ==  [4,8,1]
vecinos1 :: Matriz -> Pos -> [Int]
vecinos1 a p =
  [a!p' | p' <- posicionesVecinos1 a p]
 
-- (posicionesVecinos a p) es la lista de las posiciones de los
-- vecino de p en la matriz a. Por ejemplo,
--    λ> posicionesVecinos1 3 3 (2,2)
--    [(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,3)]
--    λ> posicionesVecinos1 3 3 (1,1)
--    [(1,2),(2,1),(2,2)]
posicionesVecinos1 :: Matriz -> Pos -> [Pos]
posicionesVecinos1 a (i,j) =
  [(i+di,j+dj) | (di,dj) <- [(-1,-1),(-1,0),(-1,1),
                             ( 0,-1),       ( 0,1),
                             ( 1,-1),( 1,0),( 1,1)],
                 inRange (bounds a) (i+di,j+dj)]
 
-- 2ª solución
-- ===========
 
algunoMenor2 :: Matriz -> [Int]
algunoMenor2 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos2 p)]
  where
    vecinos2 p =
      [a!p' | p' <- posicionesVecinos2 p]
    posicionesVecinos2 (i,j) =
      [(i+di,j+dj) | (di,dj) <- [(-1,-1),(-1,0),(-1,1),
                                 ( 0,-1),       ( 0,1),
                                 ( 1,-1),( 1,0),( 1,1)],
                     inRange (bounds a) (i+di,j+dj)]
 
-- 3ª solución
-- ===========
 
algunoMenor3 :: Matriz -> [Int]
algunoMenor3 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos3 p)]
  where
    vecinos3 p =
      [a!p' | p' <- posicionesVecinos3 p]
    posicionesVecinos3 (i,j) =
      [(i',j') | i' <- [i-1..i+1],
                 j' <- [j-1..j+1],
                 (i',j') /= (i,j),
                 inRange (bounds a) (i',j')]
 
-- 4ª solución
-- ===========
 
algunoMenor4 :: Matriz -> [Int]
algunoMenor4 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos4 p)]
  where
    vecinos4 p =
      [a!p' | p' <- posicionesVecinos4 p]
    posicionesVecinos4 (i,j) =
      [(i',j') | i' <- [max 1 (i-1)..min m (i+1)],
                 j' <- [max 1 (j-1)..min n (j+1)],
                 (i',j') /= (i,j)]
      where (_,(m,n)) = bounds a
 
 
-- 5ª solución
-- ===========
 
algunoMenor5 :: Matriz -> [Int]
algunoMenor5 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos5 p)]
  where
    vecinos5 p =
      [a!p' | p' <- posicionesVecinos5 p]
    posicionesVecinos5 (i,j) =
      [(i-1,j-1) | i > 1, j > 1] ++
      [(i-1,j)   | i > 1]        ++
      [(i-1,j+1) | i > 1, j < n] ++
      [(i,j-1)   | j > 1]        ++
      [(i,j+1)   | j < n]        ++
      [(i+1,j-1) | i < m, j > 1] ++
      [(i+1,j)   | i < m]        ++
      [(i+1,j+1) | i < m, j < n]
      where (_,(m,n)) = bounds a
 
-- ---------------------------------------------------------------------
 
-- Comprobación de equivalencia
-- ============================
 
newtype Matriz2 = M Matriz
  deriving Show
 
-- Generador de matrices arbitrarias. Por ejemplo,
--    λ> generate matrizArbitraria
--    M (array ((1,1),(3,4))
--             [((1,1),18),((1,2),6), ((1,3),-23),((1,4),-13),
--              ((2,1),-2),((2,2),22),((2,3),-25),((2,4),-5),
--              ((3,1),2), ((3,2),16),((3,3),-15),((3,4),7)])
matrizArbitraria :: Gen Matriz2
matrizArbitraria = do
  m  <- chooseInt (1,10)
  n  <- chooseInt (1,10)
  xs <- vectorOf (m*n) arbitrary
  return (M (listArray ((1,1),(m,n)) xs))
 
-- Matriz es una subclase de Arbitrary.
instance Arbitrary Matriz2 where
  arbitrary = matrizArbitraria
 
-- La propiedad es
prop_algunoMenor :: Matriz2 -> Bool
prop_algunoMenor (M p) =
  all (== algunoMenor1 p)
      [algunoMenor2 p,
       algunoMenor3 p,
       algunoMenor4 p,
       algunoMenor5 p]
 
-- La comprobación es
--    λ> quickCheck prop_algunoMenor
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> maximum (algunoMenor1 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.20 secs, 1,350,075,240 bytes)
--    λ> maximum (algunoMenor2 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.24 secs, 1,373,139,968 bytes)
--    λ> maximum (algunoMenor3 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.08 secs, 1,200,734,112 bytes)
--    λ> maximum (algunoMenor4 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.76 secs, 1,287,653,136 bytes)
--    λ> maximum (algunoMenor5 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (1.67 secs, 953,937,600 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>