Aproximación del número pi

Una forma de aproximar el número π es usando la siguiente igualdad:

Es decir, la serie cuyo término general n-ésimo es el cociente entre el producto de los primeros n números y los primeros n números impares:

Definir la función

tal que (aproximaPi n) es la aproximación del número π calculada con la serie anterior hasta el término n-ésimo. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Método de bisección para aproximar raíces de funciones

El método de bisección para calcular un cero de una función en el intervalo [a,b] se basa en el teorema de Bolzano:

«Si f(x) es una función continua en el intervalo [a, b], y si, además, en los extremos del intervalo la función f(x) toma valores de signo opuesto (f(a) * f(b) < 0), entonces existe al menos un valor c en (a, b) para el que f(c) = 0".

El método para calcular un cero de la función f en el intervalo [a,b] con un error menor que e consiste en tomar el punto medio del intervalo c = (a+b)/2 y considerar los siguientes casos:

  • Si |f(c)| < e, hemos encontrado una aproximación del punto que anula f en el intervalo con un error aceptable.
  • Si f(c) tiene signo distinto de f(a), repetir el proceso en el intervalo [a,c].
  • Si no, repetir el proceso en el intervalo [c,b].

Definir la función

tal que (biseccion f a b e) es una aproximación del punto del intervalo [a,b] en el que se anula la función f, con un error menor que e, calculada mediante el método de la bisección. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Cálculo aproximado de integrales definidas

La integral definida de una función f entre los límites a y b puede calcularse mediante la regla del rectángulo usando la fórmula

con a+n*h+h/2 <= b < a+(n+1)*h+h/2 y usando valores pequeños para h.

Definir la función

tal que (integral a b f h) es el valor de dicha expresión. Por ejemplo, el cálculo de la integral de f(x) = x^3 entre 0 y 1, con paso 0.01, es

Otros ejemplos son

Soluciones

El código se encuentra en GitHub.