Notas: Se usa la librería I1M.PolOperaciones que se encuentra aquí y se describe aquí. Además, en el último ejemplo se usa la función coeficiente tal que (coeficiente k p) es el coeficiente del término de grado k en el polinomio p definida por
coeficiente :: Num a => Int -> Polinomio a -> a
coeficiente k p | k == n = coefLider p
| k > grado (restoPol p) = 0
| otherwise = coeficiente k (restoPol p)
where n = grado p
coeficiente :: Num a => Int -> Polinomio a -> a
coeficiente k p | k == n = coefLider p
| k > grado (restoPol p) = 0
| otherwise = coeficiente k (restoPol p)
where n = grado p
Soluciones
import Data.List (genericIndex)import I1M.PolOperaciones (Polinomio, coefLider, consPol, derivada,
grado, multPol, polCero, polUnidad, restoPol,
sumaPol)import Test.QuickCheck (Positive (Positive), quickCheck)-- Función auxiliar-- ================-- (coeficiente k p) es el coeficiente del término de grado k en el-- polinomio p.
coeficiente ::Num a =>Int-> Polinomio a -> a
coeficiente k p | k == n = coefLider p
| k > grado (restoPol p)=0|otherwise= coeficiente k (restoPol p)where n = grado p
-- 1ª solución-- ===========
polBell1 ::Integer-> Polinomio Integer
polBell1 0= polUnidad
polBell1 n = multPol (consPol 11 polCero)(sumaPol p (derivada p))where p = polBell1 (n-1)-- 2ª solución-- ===========
polBell2 ::Integer-> Polinomio Integer
polBell2 n = sucPolinomiosBell `genericIndex` n
sucPolinomiosBell ::[Polinomio Integer]
sucPolinomiosBell =iterate f polUnidad
where f p = multPol (consPol 11 polCero)(sumaPol p (derivada p))-- Comprobación de equivalencia-- ============================-- La propiedad es
prop_polBell :: Positive Integer->Bool
prop_polBell (Positive n)=
polBell1 n == polBell2 n
-- La comprobación es-- λ> quickCheck prop_polBell-- +++ OK, passed 100 tests.-- Comparación de eficiencia-- =========================-- La comparación es-- λ> length (show (coeficiente 9 (polBell1 2000)))-- 1903-- (5.37 secs, 4,829,322,368 bytes)-- λ> length (show (coeficiente 9 (polBell2 2000)))-- 1903-- (4.03 secs, 4,825,094,064 bytes)
import Data.List (genericIndex)
import I1M.PolOperaciones (Polinomio, coefLider, consPol, derivada,
grado, multPol, polCero, polUnidad, restoPol,
sumaPol)
import Test.QuickCheck (Positive (Positive), quickCheck)
-- Función auxiliar
-- ================
-- (coeficiente k p) es el coeficiente del término de grado k en el
-- polinomio p.
coeficiente :: Num a => Int -> Polinomio a -> a
coeficiente k p | k == n = coefLider p
| k > grado (restoPol p) = 0
| otherwise = coeficiente k (restoPol p)
where n = grado p
-- 1ª solución
-- ===========
polBell1 :: Integer -> Polinomio Integer
polBell1 0 = polUnidad
polBell1 n = multPol (consPol 1 1 polCero) (sumaPol p (derivada p))
where p = polBell1 (n-1)
-- 2ª solución
-- ===========
polBell2 :: Integer -> Polinomio Integer
polBell2 n = sucPolinomiosBell `genericIndex` n
sucPolinomiosBell :: [Polinomio Integer]
sucPolinomiosBell = iterate f polUnidad
where f p = multPol (consPol 1 1 polCero) (sumaPol p (derivada p))
-- Comprobación de equivalencia
-- ============================
-- La propiedad es
prop_polBell :: Positive Integer -> Bool
prop_polBell (Positive n) =
polBell1 n == polBell2 n
-- La comprobación es
-- λ> quickCheck prop_polBell
-- +++ OK, passed 100 tests.
-- Comparación de eficiencia
-- =========================
-- La comparación es
-- λ> length (show (coeficiente 9 (polBell1 2000)))
-- 1903
-- (5.37 secs, 4,829,322,368 bytes)
-- λ> length (show (coeficiente 9 (polBell2 2000)))
-- 1903
-- (4.03 secs, 4,825,094,064 bytes)
Un conjunto A está cerrado respecto de una función f si para elemento x de A se tiene que f(x) pertenece a A. La clausura de un conjunto B respecto de una función f es el menor conjunto A que contiene a B y es cerrado respecto de f. Por ejemplo, la clausura de {0,1,2] respecto del opuesto es {-2,-1,0,1,2}.
Definir la función
clausura :: Ord a => (a -> a) -> [a] -> [a]
clausura :: Ord a => (a -> a) -> [a] -> [a]
tal que (clausura f xs) es la clausura de xs respecto de f. Por ejemplo,
module Clausura whereimport Data.List ((\\), nub, sort, union)import Test.QuickCheck.HigherOrder (quickCheck')importqualified Data.Set as S (Set, difference, fromList, map, null, toList, union)-- 1ª solución-- ===========
clausura1 ::Ord a =>(a -> a)->[a]->[a]
clausura1 f xs
| esCerrado f xs = sort xs
|otherwise= clausura1 f (expansion f xs)-- (esCerrado f xs) se verifica si al aplicar f a cualquier elemento de-- xs se obtiene un elemento de xs. Por ejemplo,-- λ> esCerrado (\x -> -x) [0,1,2]-- False-- λ> esCerrado (\x -> -x) [0,1,2,-2,-1]-- True
esCerrado ::Ord a =>(a -> a)->[a]->Bool
esCerrado f xs =all(`elem` xs)(map f xs)-- (expansion f xs) es la lista (sin repeticiones) obtenidas añadiéndole-- a xs el resulta de aplicar f a sus elementos. Por ejemplo,-- expansion (\x -> -x) [0,1,2] == [0,1,2,-1,-2]
expansion ::Ord a =>(a -> a)->[a]->[a]
expansion f xs = xs `union` map f xs
-- 2ª solución-- ===========
clausura2 ::Ord a =>(a -> a)->[a]->[a]
clausura2 f xs = sort (until(esCerrado f)(expansion f) xs)-- 3ª solución-- ===========
clausura3 ::Ord a =>(a -> a)->[a]->[a]
clausura3 f xs = aux xs xs
where aux ys vs |null ns = sort vs
|otherwise= aux ns (vs ++ ns)where ns = nub (map f ys)\\ vs
-- 4ª solución-- ===========
clausura4 ::Ord a =>(a -> a)->[a]->[a]
clausura4 f xs = S.toList (clausura4' f (S.fromList xs))
clausura4' ::Ord a =>(a -> a)-> S.Set a -> S.Set a
clausura4' f xs = aux xs xs
where aux ys vs | S.null ns = vs
|otherwise= aux ns (vs `S.union` ns)where ns = S.map f ys `S.difference` vs
-- Comprobación de equivalencia-- ============================-- La propiedad es
prop_clausura ::(Int->Int)->[Int]->Bool
prop_clausura f xs =all(== clausura1 f xs')[ clausura2 f xs'
, clausura3 f xs'
, clausura4 f xs'
]where xs' = sort (nub xs)-- La comprobación es-- λ> quickCheck' prop_clausura-- +++ OK, passed 100 tests.-- Comparación de eficiencia-- =========================-- La comparación es-- λ> length (clausura1 (\x -> (x+1) `mod` 800) [0])-- 800-- (1.95 secs, 213,481,560 bytes)-- λ> length (clausura2 (\x -> (x+1) `mod` 800) [0])-- 800-- (1.96 secs, 213,372,824 bytes)-- λ> length (clausura3 (\x -> (x+1) `mod` 800) [0])-- 800-- (0.03 secs, 42,055,128 bytes)-- λ> length (clausura4 (\x -> (x+1) `mod` 800) [0])-- 800-- (0.01 secs, 1,779,768 bytes)---- λ> length (clausura3 (\x -> (x+1) `mod` (10^4)) [0])-- 10000-- (2.50 secs, 8,080,105,816 bytes)-- λ> length (clausura4 (\x -> (x+1) `mod` (10^4)) [0])-- 10000-- (0.05 secs, 27,186,920 bytes)
module Clausura where
import Data.List ((\\), nub, sort, union)
import Test.QuickCheck.HigherOrder (quickCheck')
import qualified Data.Set as S (Set, difference, fromList, map, null, toList, union)
-- 1ª solución
-- ===========
clausura1 :: Ord a => (a -> a) -> [a] -> [a]
clausura1 f xs
| esCerrado f xs = sort xs
| otherwise = clausura1 f (expansion f xs)
-- (esCerrado f xs) se verifica si al aplicar f a cualquier elemento de
-- xs se obtiene un elemento de xs. Por ejemplo,
-- λ> esCerrado (\x -> -x) [0,1,2]
-- False
-- λ> esCerrado (\x -> -x) [0,1,2,-2,-1]
-- True
esCerrado :: Ord a => (a -> a) -> [a] -> Bool
esCerrado f xs = all (`elem` xs) (map f xs)
-- (expansion f xs) es la lista (sin repeticiones) obtenidas añadiéndole
-- a xs el resulta de aplicar f a sus elementos. Por ejemplo,
-- expansion (\x -> -x) [0,1,2] == [0,1,2,-1,-2]
expansion :: Ord a => (a -> a) -> [a] -> [a]
expansion f xs = xs `union` map f xs
-- 2ª solución
-- ===========
clausura2 :: Ord a => (a -> a) -> [a] -> [a]
clausura2 f xs = sort (until (esCerrado f) (expansion f) xs)
-- 3ª solución
-- ===========
clausura3 :: Ord a => (a -> a) -> [a] -> [a]
clausura3 f xs = aux xs xs
where aux ys vs | null ns = sort vs
| otherwise = aux ns (vs ++ ns)
where ns = nub (map f ys) \\ vs
-- 4ª solución
-- ===========
clausura4 :: Ord a => (a -> a) -> [a] -> [a]
clausura4 f xs = S.toList (clausura4' f (S.fromList xs))
clausura4' :: Ord a => (a -> a) -> S.Set a -> S.Set a
clausura4' f xs = aux xs xs
where aux ys vs | S.null ns = vs
| otherwise = aux ns (vs `S.union` ns)
where ns = S.map f ys `S.difference` vs
-- Comprobación de equivalencia
-- ============================
-- La propiedad es
prop_clausura :: (Int -> Int) -> [Int] -> Bool
prop_clausura f xs =
all (== clausura1 f xs')
[ clausura2 f xs'
, clausura3 f xs'
, clausura4 f xs'
]
where xs' = sort (nub xs)
-- La comprobación es
-- λ> quickCheck' prop_clausura
-- +++ OK, passed 100 tests.
-- Comparación de eficiencia
-- =========================
-- La comparación es
-- λ> length (clausura1 (\x -> (x+1) `mod` 800) [0])
-- 800
-- (1.95 secs, 213,481,560 bytes)
-- λ> length (clausura2 (\x -> (x+1) `mod` 800) [0])
-- 800
-- (1.96 secs, 213,372,824 bytes)
-- λ> length (clausura3 (\x -> (x+1) `mod` 800) [0])
-- 800
-- (0.03 secs, 42,055,128 bytes)
-- λ> length (clausura4 (\x -> (x+1) `mod` 800) [0])
-- 800
-- (0.01 secs, 1,779,768 bytes)
--
-- λ> length (clausura3 (\x -> (x+1) `mod` (10^4)) [0])
-- 10000
-- (2.50 secs, 8,080,105,816 bytes)
-- λ> length (clausura4 (\x -> (x+1) `mod` (10^4)) [0])
-- 10000
-- (0.05 secs, 27,186,920 bytes)