Polinomios de Bell

Los polinomios de Bell forman una sucesión de polinomios, definida como sigue:

  • B₀(x) = 1 (polinomio unidad)
  • Bₙ(x) = x·[Bₙ(x) + Bₙ'(x)] (donde Bₙ'(x) es la derivada de Bₙ(x))

Por ejemplo,

Definir la función

tal que (polBell n) es el polinomio de Bell de grado n. Por ejemplo,

Notas: Se usa la librería I1M.PolOperaciones que se encuentra aquí y se describe aquí. Además, en el último ejemplo se usa la función coeficiente tal que (coeficiente k p) es el coeficiente del término de grado k en el polinomio p definida por

Soluciones

El código se encuentra en GitHub.

Clausura de un conjunto respecto de una función

Un conjunto A está cerrado respecto de una función f si para elemento x de A se tiene que f(x) pertenece a A. La clausura de un conjunto B respecto de una función f es el menor conjunto A que contiene a B y es cerrado respecto de f. Por ejemplo, la clausura de {0,1,2] respecto del opuesto es {-2,-1,0,1,2}.

Definir la función

tal que (clausura f xs) es la clausura de xs respecto de f. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo