Representación matricial de relaciones binarias

Dada una relación r sobre un conjunto de números enteros, la matriz asociada a r es una matriz booleana p (cuyos elementos son True o False), tal que p(i,j) = True si y sólo si i está relacionado con j mediante la relación r.

Las relaciones binarias homogéneas y las matrices booleanas se pueden representar por

Definir la función

tal que (matrizRB r) es la matriz booleana asociada a r. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Suma de los elementos de las diagonales matrices espirales

Empezando con el número 1 y moviéndose en el sentido de las agujas del reloj se obtienen las matrices espirales

La suma los elementos de sus diagonales es

Definir la función

tal que (sumaDiagonales n) es la suma de los elementos en las diagonales de la matriz espiral de orden nxn. Por ejemplo.

Comprobar con QuickCheck que el último dígito de (sumaDiagonales n) es 0, 4 ó 6 si n es par y es 1, 5 ó 7 en caso contrario.

Soluciones

El código se encuentra en GitHub.

Matriz zigzagueante

La matriz zizagueante de orden n es la matriz cuadrada con n filas y n columnas y cuyos elementos son los n² primeros números naturales colocados de manera creciente a lo largo de las diagonales secundarias. Por ejemplo, La matriz zigzagueante de orden 5 es

La colocación de los elementos se puede ver gráficamente en esta figura

Definir la función

tal que (zigZag n) es la matriz zigzagueante de orden n. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Mínimo producto escalar

El producto escalar de los vectores [a1,a2,…,an] y [b1,b2,…, bn] es

Definir la función

tal que (menorProductoEscalar xs ys) es el mínimo de los productos escalares de las permutaciones de xs y de las permutaciones de ys. Por ejemplo,

Soluciones

El código se encuentra en GitHub.