Sucesión fractal

La sucesión fractal

está construida de la siguiente forma:

  • los términos pares forman la sucesión de los números naturales

  • los términos impares forman la misma sucesión original

Definir las funciones

tales que

  • sucFractal es la lista de los términos de la sucesión fractal. Por ejemplo,

  • (sumaSucFractal n) es la suma de los n primeros términos de la sucesión fractal. Por ejemplo,

Soluciones

[schedule expon=’2018-06-19′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 17 de mayo.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2018-06-19′ at=»06:00″]

Referencia

+ [Fractal sequences and restricted Nim](http://bit.ly/1WX1IjB) por Lionel Levine.
[/schedule]

Puntos alcanzables en un mapa

Un mapa con dos tipos de regiones (por ejemplo, tierra y mar) se puede representar mediante una matriz de ceros y unos.

Para los ejemplos usaremos los mapas definidos por

Definir las funciones

tales que

  • (alcanzables p) es la lista de los puntos de mapa m que se pueden alcanzar a partir del punto p moviéndose en la misma región que p (es decir, a través de ceros si el elemento de m en p es un cero o a través de unos, en caso contrario) y los movimientos permitidos son ir hacia el norte, sur este u oeste (pero no en diagonal). Por ejemplo,

  • (esAlcanzable m p1 p2) se verifica si el punto p1 es alcanzable desde el p1 en el mapa m. Por ejemplo,

Nota: Este ejercicio está basado en el problema 10 kinds of people de Kattis.

Soluciones

Recorrido en ZigZag

El recorrido en ZigZag de una matriz consiste en pasar de la primera fila hasta la última, de izquierda a derecha en las filas impares y de derecha a izquierda en las filas pares, como se indica en la figura.

Definir la función

tal que (recorridoZigZag m) es la lista con los elementos de la matriz m cuando se recorre esta en ZigZag. Por ejemplo,

Soluciones

Sin ceros consecutivos

Definir la función

tal que (sinDobleCero n) es la lista de las listas de longitud n formadas por el 0 y el 1 tales que no contiene dos ceros consecutivos. Por ejemplo,

Soluciones

[schedule expon=’2018-06-13′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 06 de junio.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2018-06-13′ at=»06:00″]

[/schedule]

El problema de las N torres

El problema de las N torres consiste en colocar N torres en un tablero con N filas y N columnas de forma que no haya dos torres en la misma fila ni en la misma columna.

Cada solución del problema de puede representar mediante una matriz con ceros y unos donde los unos representan las posiciones ocupadas por las torres y los ceros las posiciones libres. Por ejemplo,

representa una solución del problema de las 3 torres.

Definir las funciones

tales que
+ (torres n) es la lista de las soluciones del problema de las n torres. Por ejemplo,

  • (nTorres n) es el número de soluciones del problema de las n torres. Por ejemplo,

Soluciones

[schedule expon=’2018-06-12′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 17 de abril.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2018-06-12′ at=»06:00″]

[/schedule]

Valores de polinomios y de expresiones

Las expresiones aritméticas construidas con una variables, los números enteros y las operaciones de sumar y multiplicar se pueden representar mediante el tipo de datos Exp definido por

Por ejemplo, la expresión 3+5x^2 se puede representar por

Por su parte, los polinomios se pueden representar por la lista de sus
coeficientes. Por ejemplo, el polinomio 3+5x^2 se puede representar por [3,0,5].

Definir las funciones

tales que

  • (valorE e n) es el valor de la expresión e cuando se sustituye su variable por n. Por ejemplo,

  • (expresion p) es una expresión aritmética equivalente al polinomio p. Por ejemplo,

  • (valorP p n) es el valor del polinomio p cuando se sustituye su variable por n. Por ejemplo,

Comprobar con QuickCheck que, para todo polinomio p y todo entero n,

Soluciones

Ancestro común más bajo

El tipo de los árboles binarios se define por

Por ejemplo, el árbol

se define por

Un árbol ordenado es un árbol binario tal que para cada nodo, los elementos de su subárbol izquierdo son menores y los de su subárbol derecho son mayores. El árbol anterior es un árbol ordenado.

Los ancestros de un nodo x son los nodos y tales que x está en alguna de las ramas de x. Por ejemplo, en el árbol anterior los ancestros de 9 son 5 y 7.

El ancestro común más bajo de dos elementos x e y de un árbol a es el ancestro de x e y de menor profundidad. Por ejemplo, en el árbol anterior el ancestro común más bajo de 6 y 9 es 7.

Definir la función

tal que (ancestroComunMasBajo a x y) es el ancestro de menor profundidad de los nodos x e y en el árbol ordenado a, donde x e y son dos elementos distintos del árbol a. Por ejemplo,

Soluciones