Ordenación según una cadena

Dada una lista xs y una cadena cs de la misma longitud, la ordenación de xs según cs consiste en emparejar los elementos de cs con los de xs (de forma que al menor elemento de cs le corresponde el menor de xs, al segundo de cs el segundo de xs, etc.) y ordenar los elementos de xs en el mismo orden que sus correspondientes elementos de cs. Por ejemplo, si xs es [6,4,2] y cs es «CAB» entonces a ‘A’ le corresponde el 2, a ‘B’ el 4 y a ‘C’ el 6; luego la ordenación es [6,2,4].

Definir la función

tal que (ordenacion xs ys) es la ordenación de la lista xs según la cadena cs. Por ejemplo,

Soluciones

Factorial módulo

Definir la función

tal que (factorialMod n x) es el factorial de x módulo n. Por ejemplo,

Soluciones

Recorrido por niveles de árboles binarios

Los árboles binarios con valores en las hojas y en los nodos se definen por

Por ejemplo, el árbol

se pueden representar por

Definir la función

tal que (recorrido a) es el recorrido del árbol a por niveles desde la raíz a las hojas y de izquierda a derecha. Por ejemplo,

Soluciones

Sucesión de raíces enteras de los números primos

Definir las siguientes funciones

tales que

  • raicesEnterasPrimos es la sucesión de las raíces enteras (por defecto) de los números primos. Por ejemplo,

  • (posiciones x) es el par formado por la menor y la mayor posición de x en la sucesión de las raíces enteras de los números primos. Por ejemplo,

  • (frecuencia x) es el número de veces que aparece x en la sucesión de las raíces enteras de los números primos. Por ejemplo,

  • (grafica_raicesEnterasPrimos n) dibuja la gráfica de los n primeros términos de la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_raicesEnterasPrimos 200) dibuja
    Sucesion_de_raices_enteras_de_primos_1
  • (grafica_posicionesIniciales n) dibuja la gráfica de las menores posiciones de los n primeros números en la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_posicionesIniciales 200) dibuja
    Sucesion_de_raices_enteras_de_primos_2
  • (grafica_frecuencia n) dibuja la gráfica de las frecuencia de los n primeros números en la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_frecuencia 200) dibuja
    Sucesion_de_raices_enteras_de_primos_3

Soluciones

Posiciones de las mayúsculas

Definir la función

tal que (posicionesMayusculas cs) es la lista de las posiciones de las mayúsculas de la cadena cs. Por ejemplo,

Soluciones

Rotaciones divisibles por 8

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816 de las que 3 son divisibles por 8 (928160, 160928 y 92816).

Definir la función

tal que (nRotacionesDivisiblesPor8 x) es el número de rotaciones de x divisibles por 8. Por ejemplo,

Soluciones

Sumable sin vecinos

En la lista [3,2,5,7,4] el número 12 se puede escribir como una suma de elementos de la lista sin incluir sus vecinos (ya que es la suma de 3, 5 y 4); en cambio, 14 no lo es (porque es la suma de 3, 7 y 4, pero 7 y 4 son vecinos).

Definir la función

tal que (esSumableSinVecinos xs n) se verifica si n se puede escribir como una suma de elementos de xs que no incluye a ninguno de sus vecinos. Por ejemplo,

Soluciones

Suma de las hojas de mínimo nivel

Los árboles binarios con valores en las hojas y en los nodos se definen por

Por ejemplo, el árbol

se pueden representar por

En el árbol anterior, los valores de las hojas de menor nivel son 4, 6 y 7 cuya suma es 17.

Definir la función

tal que (suma a) es la suma de los valores de las hojas de menor nivel del árbol a. Por ejemplo,

Soluciones

Vecino en lista circular

En la lista circular [3,2,5,7,9]

  • el vecino izquierdo de 5 es 2 y su vecino derecho es 7,
  • el vecino izquierdo de 9 es 7 y su vecino derecho es 3,
  • el vecino izquierdo de 3 es 9 y su vecino derecho es 2,
  • el elemento 4 no tiene vecinos (porque no está en la lista).

Para indicar las direcciones se define el tipo de datos

Definir la función

tal que (vecino d xs x) es el vecino de x en la lista de elementos distintos xs según la dirección d. Por ejemplo,

Soluciones

Cadenas opuestas

La opuesta de una cadena de letras es la cadena obtenida cambiando las minúsculas por mayúsculas y las minúsculas por mayúsculas. Por ejemplo, la opuesta de «SeViLLa» es «sEvIllA».

Definir la función

tal que (esOpuesta s1 s2) se verifica si las cadenas de letras s1 y s2 son opuestas. Por ejemplo,

Soluciones

Menor con suma de dígitos dada

Definir la función

tal que (minSumDig n) es el menor número x tal que la suma de los dígitos de x es n. Por ejemplo,

Soluciones

Aplicaciones biyectivas

Definir las funciones

tales que

  • (biyectivas xs ys) es el conjunto de las aplicaciones biyectivas del conjunto xs en el conjunto ys. Por ejemplo,

  • (nBiyectivas xs ys) es el número de aplicaciones biyectivas del conjunto xs en el conjunto ys. Por ejemplo,

Nota: En este ejercicio los conjuntos se representan mediante listas ordenadas de elementos distintos.

Soluciones

Bosque de recorridos del autobús

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

También se pueden definir bosques. Por ejemplo,

Se pueden dibujar los bosques con la función drawForest. Por ejemplo,

Usando la notación de los ejercicios anteriores para las subidas y bajadas en el autobús, definir la función

tal que (bosqueRecorridos n m) es el bosque cuyas ramas son los recorridos correctos en un autobús de capacidad n y usando m paradas. Por ejemplo,

en donde la última rama representa el recorrido [(2,0),(2,2),(2,2)].

Soluciones

Reconocimiento de recorridos correctos

Se usará la misma representación del ejercicio anterior para las subidas y bajadas en el autobús; es decir, una lista de pares donde los primeros elementos es el número de viajeros que suben y los segundo es el de los que bajan.

Un recorrido es correcto si en cada bajada tanto el número de viajeros que suben como los que bajan son positivos, el número de viajeros en el autobús no puede ser mayor que su capacidad y el número de viajeros que bajan no puede ser mayor que el número de viajeros en el autobús. Se supone que en la primera parada el autobús no tiene viajeros.

Definir la función

tal que (recorridoCorrecto n ps) se verifica si ps es un recorrido correcto en un autobús cuya capacidad es n. Por ejemplo,

el segundo ejemplo es incorrecto porque en la última para se supera la capacidad del autobús; el tercero, porque en la primera para no hay viajeros en el autobús que se puedan bajar y el cuarto, porque en la 2ª parada el autobús tiene 3 viajeros por lo que es imposible que se bajen 7.

Soluciones

Número de viajeros en el autobús

Un autobús inicia su recorrido con 0 viajeros. El número de viajeros que se suben y bajan en cada parada se representa por un par (x,y) donde x es el número de las que suben e y el de las que bajan. Un recorrido del autobús se representa por una lista de pares representando los números de viajeros que suben o bajan en cada parada.

Definir la función

tal que (nViajerosEnBus ps) es el número de viajeros en el autobús tras el recorrido ps. Por ejemplo,

Soluciones

Ordenación valle

La ordenación valle de la lista [79,35,54,19,35,25,12] es la lista [79,35,25,12,19,35,54] ya que es una permutación de la primera y cumple las siguientes condiciones

  • se compone de una parte decreciente ([79,35,25]), un elemento mínimo (12) y una parte creciente ([19,35,54]);
  • las dos partes tienen el mismo número de elementos;
  • cada elemento de la primera parte es mayor o igual que su correspondiente en la segunda parte; es decir. 79 ≥ 54, 35 ≥ 35 y 25 ≥ 19;
  • además, la diferencia entre dichos elementos es la menor posible.

En el caso, de que la longitud de la lista sea par, la división tiene sólo dos partes (sin diferenciar el menor elemento). Por ejemplo, el valle de [79,35,54,19,35,25] es [79,35,25,19,35,54].

Definir la función

tal que (valle xs) es la ordenación valle de la lista xs. Por ejemplo,

En el último ejemplo se muestra cómo la última condición descarta la posibilidad de que la lista [17,17,15,14,8,1,4,4,5,7,7] también sea solución ya que aunque se cumplen se cumplen las tres primeras condiciones la diferencia entre los elementos correspondientes es mayor que en la solución; por ejemplo, 17 – 7 > 17 – 17.

Soluciones

Caminos minimales en un árbol numérico

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u*v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que

  • (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones

Máximo de las rotaciones restringidas

Rotar un número a la iquierda significa pasar su primer dígito al final. Por ejemplo, rotando a la izquierda el 56789 se obtiene 67895.

Las rotaciones restringidas del número 56789 se obtienen como se indica a continución:

  • Se inicia con el propio número: 56789
  • El anterior se rota a la izquierda y se obtiene el 67895.
  • Del anterior se fija el primer dígito y se rota a la iquierda los otros. Se obtiene 68957.
  • Del anterior se fijan los 2 primeros dígito y se rota a la iquierda los otros. Se obtiene 68579.
  • Del anterior se fijan los 3 primeros dígito y se rota a la iquierda los otros. Se obtiene 68597.

El proceso ha terminado ya que conservando los cuatro primeros queda sólo un dígito que al girar es él mismo. Por tanto, la sucesión de las rotaciones restringidas de 56789 es

y su mayor elemento es 68957.

Definir la función

tal que (maxRotaciones n) es el máximo de las rotaciones restringidas del número n. Por ejemplo,

Soluciones

Aplicación de lista de funciones a lista de elementos

Definir la función

tal que (aplicaLista fs xs) es la lista de los valores de las funciones de fs
aplicadas a los correspondientes elementos de xs. Por ejemplo,

Soluciones

Mayúsculas y minúsculas alternadas

Definir la función

tal que (alternadas cs) es el par de cadenas (xs,ys) donde xs es la cadena obtenida escribiendo alternativamente en mayúscula o minúscula las letras de la palabra cs (que se supone que es una cadena de letras minúsculas) e ys se obtiene análogamente pero empezando en minúscula. Por ejemplo,

Soluciones

Conjunto de funciones entre dos conjuntos

Una función f entre dos conjuntos A e B se puede representar mediante una lista de pares de AxB tales que para cada elemento a de A existe un único elemento b de B tal que (a,b) pertenece a f. Por ejemplo,

  • [(1,2),(3,6)] es una función de [1,3] en [2,4,6];
  • [(1,2)] no es una función de [1,3] en [2,4,6], porque no tiene ningún par cuyo primer elemento sea igual a 3;
  • [(1,2),(3,6),(1,4)] no es una función porque hay dos pares distintos cuya primera coordenada es 1.

Definir las funciones

tales que

  • (funciones xs ys) es el conjunto de las funciones del conjunto xs en el conjunto ys. Por ejemplo,

  • (nFunciones xs ys) es el número de funciones del conjunto xs en el conjunto ys. Por ejemplo,

Soluciones