Factoriales iguales a su número de dígitos

Se dice que un número n tiene un factorial especial si el número de dígitos de n! es igual a n. Por ejemplo, 22 tiene factorial especial porque 22! es 1124000727777607680000 que tiene 22 dígitos.

Definir la función

tal que su valor es la lista de los números que tienen factoriales especiales. Por ejemplo,

Nota: Si factorialesEspeciales es una lista finita, argumentar porqué no puede tener más elementos.

Soluciones

Próximos a múltiplos de 6

Se dice que un par de números (x,y) está próximo a un múltiplo de 6 si es de la forma (6*n-1,6*n+1). Por ejemplo, (17,19) está cerca de un múltiplo de 6 porque (17,19) = (6*3-1,6*3+1).

Definir la función

tal que (proximosAmultiplosDe6 (x,y)) se verifica si el par (x,y) está próximo a un múltiplo de 6. Por ejemplo,

Soluciones

Lista con repeticiones

Definir la función

tal que (tieneRepeticiones xs) se verifica si xs tiene algún elemento repetido. Por ejemplo,

Soluciones

Mayor resto

El resultado de dividir un número n por un divisor d es un cociente q y un resto r.

Definir la función

tal que (mayorResto n d) es el par (m,xs) tal que m es el mayor resto de dividir n entre x (con 1 ≤ x < d) y xs es la lista de números x menores que d tales que el resto de n entre x es m. Por ejemplo,

Nota: Se supone que d es mayor que 1.

Soluciones

Referencia

El ejercio está basado en el problema Largest possible remainder publicado el 16 de octubre de 2015 en «Programming paraxis».

Entero positivo con ciertas propiedades

El 6 de octubre, se propuso en el blog Gaussianos el siguiente problema

Demostrar que para todo entero positivo n, existe otro entero positivo que tiene las siguientes propiedades:

  1. Tiene exactamente n dígitos.
  2. Ninguno de sus dígitos es 0.
  3. Es divisible por la suma de sus dígitos.

Definir la función

tal que (especiales n) es la lista de los números enteros que cumplen las 3 propiedades anteriores para n. Por ejemplo,

En el primer ejemplo, 12 es un número especial para 2 ya que tiene exactamente 2 dígitos, ninguno de sus dígitos es 0 y 12 es divisible por la suma de sus dígitos.

Soluciones

Centro de masas

El centro de masas de un sistema discreto es el punto geométrico que dinámicamente se comporta como si en él estuviera aplicada la resultante de las fuerzas externas al sistema.

Representamos un conjunto de n masas en el plano mediante una lista de n pares de la forma ((a(i),b(i)),m(i)) donde (a(i),b(i)) es la posición y m(i) la masa puntual. Las coordenadas del centro de masas (a,b) se calculan por

Definir la función

tal que (centrodeMasas xs) es las coordenadas del centro
de masas del sistema discreto xs. Por ejemplo:

Soluciones

Refinamiento de listas

Definir la función

tal que (refinada xs) es la lista obtenida intercalando entre cada dos elementos consecutivos de xs su media aritmética. Por ejemplo,

Soluciones