Pruebas de take n xs ++ drop n xs = xs

En Lean están definidas las funciones

tales que

  • (take n xs) es la lista formada por los n primeros elementos de xs. Por ejemplo,

  • (drop n xs) es la lista formada eliminando los n primeros elementos de xs. Por ejemplo,

  • (xs ++ ys) es la lista obtenida concatenando xs e ys. Por ejemplo.

Dichas funciones están caracterizadas por los siguientes lemas:

Demostrar que

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Pruebas de length (xs ++ ys) = length xs + length ys

En Lean están definidas las funciones

tales que

  • (length xs) es la longitud de xs. Por ejemplo,

  • (xs ++ ys) es la lista obtenida concatenando xs e ys. Por ejemplo.

Dichas funciones están caracterizadas por los siguientes lemas:

Demostrar que

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Asociatividad de la concatenación de listas

En Lean la operación de concatenación de listas se representa por (++) y está caracterizada por los siguientes lemas

Demostrar que la concatenación es asociativa; es decir,

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Pruebas de length (repeat x n) = n

En Lean están definidas las funciones length y repeat tales que

  • (length xs) es la longitud de la lista xs. Por ejemplo,

  • (repeat x n) es la lista que tiene el elemento x n veces. Por ejemplo,

Demostrar que

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Límite de sucesiones no decrecientes

En Lean, una sucesión u₀, u₁, u₂, … se puede representar mediante una función (u : ℕ → ℝ) de forma que u(n) es uₙ.

En Lean, se define que a es el límite de la sucesión u, por

y que la sucesión u es no decreciente por

Demostrar que si u es una sucesión no decreciente y su límite es a, entonces u(n) ≤ a para todo n.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Las sucesiones divergentes positivas no tienen límites finitos

En Lean, una sucesión u₀, u₁, u₂, … se puede representar mediante una función (u : ℕ → ℝ) de forma que u(n) es uₙ.

Se define que a es el límite de la sucesión u, por

donde se usa la notación |x| para el valor absoluto de x

La sucesión u diverge positivamente cuando, para cada número real A, se puede encontrar un número natural m tal que, para n > m , se tenga u(n) > A. En Lean se puede definir por

Demostrar que si u diverge positivamente, entonces ningún número real es límite de u.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

La suma de los n primeros impares es n^2

En Lean, se puede definir el n-ésimo número primo por

Además, en la librería finset están definidas las funciones

tales que

+ (range n) es el conjunto de los n primeros números naturales. Por ejemplo, el valor de (range 3) es {0, 1, 2}.
+ (sum A f) es la suma del conjunto obtenido aplicando la función f a los elementos del conjunto finito A. Por ejemplo, el valor de (sum (range 3) impar) es 9.

Demostrar que la suma de los n primeros números impares es n².

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

El punto de acumulación de las sucesiones convergente es su límite

Para extraer una subsucesión se aplica una función de extracción que conserva el orden; por ejemplo, la subsucesión

se ha obtenido con la función de extracción φ tal que φ(n) = 2*n.

En Lean, se puede definir que φ es una función de extracción por

que a es un límite de u por

que u es convergente por

que a es un punto de acumulación de u por

Demostrar que si u es una sucesión convergente y a es un punto de acumulación de u, entonces a es un límite de u.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]