Menu Close

Etiqueta: L.le_trans

Si a es un punto de acumulación de la sucesión de Cauchy u, entonces a es el límite de u

En Lean, una sucesión u₀, u₁, u₂, … se puede representar mediante una función (u : ℕ → ℝ) de forma que u(n) es uₙ.

Para extraer una subsucesión se aplica una función de extracción queconserva el orden; por ejemplo, la subsucesión

   uₒ, u₂, u₄, u₆, ...

se ha obtenido con la función de extracción φ tal que φ(n) = 2*n.

En Lean, se puede definir que φ es una función de extracción por

   def extraccion (φ : ℕ → ℕ) :=
     ∀ n m, n < m → φ n < φ m

que a es un límite de u por

   def limite (u : ℕ → ℝ) (a : ℝ) :=
     ∀ ε > 0, ∃ N, ∀ k ≥ N, |u k - a| < ε

que a es un punto de acumulación de u por

   def punto_acumulacion (u : ℕ → ℝ) (a : ℝ) :=
     ∃ φ, extraccion φ ∧ limite (u ∘ φ) a

que la sucesión u es de Cauchy por

   def suc_cauchy (u : ℕ → ℝ) :=
     ∀ ε > 0, ∃ N, ∀ p ≥ N, ∀ q ≥ N, |u p - u q| < ε

Demostrar que si u es una sucesión de Cauchy y a es un punto de acumulación de u, entonces a es el límite de u.

Para ello, completar la siguiente teoría de Lean:

import data.real.basic
open nat
 
variable  {u :   }
variables {a : }
variable  {φ :   }
 
notation `|`x`|` := abs x
 
def extraccion (φ :   ) :=
   n m, n < m  φ n < φ m
 
def limite (u :   ) (l : ) : Prop :=
   ε > 0,  N,  n  N, |u n - l| < ε
 
def punto_acumulacion (u :   ) (a : ) :=
   φ, extraccion φ  limite (u  φ) a
 
def suc_cauchy (u :   ) :=
   ε > 0,  N,  p  N,  q  N, |u p - u q| < ε
 
example
  (hu : suc_cauchy u)
  (ha : punto_acumulacion u a)
  : limite u a :=
sorry
Soluciones con Lean
import data.real.basic
open nat
 
variable  {u :   }
variables {a : }
variable  {φ :   }
 
notation `|`x`|` := abs x
 
def extraccion (φ :   ) :=
   n m, n < m  φ n < φ m
 
def limite (u :   ) (l : ) : Prop :=
   ε > 0,  N,  n  N, |u n - l| < ε
 
def punto_acumulacion (u :   ) (a : ) :=
   φ, extraccion φ  limite (u  φ) a
 
def suc_cauchy (u :   ) :=
   ε > 0,  N,  p  N,  q  N, |u p - u q| < ε
 
lemma aux1
  (h : extraccion φ)
  :  n, n  φ n :=
begin
  intro n,
  induction n with m HI,
  { exact nat.zero_le (φ 0), },
  { apply nat.succ_le_of_lt,
    calc m  φ m        : HI
       ... < φ (succ m) : h m (m+1) (lt_add_one m), },
end
 
lemma aux2
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
λ N N', ⟨max N N', ⟨le_max_right N N',
                    le_trans (le_max_left N N')
                             (aux1 h (max N N'))⟩⟩
 
lemma cerca_acumulacion
  (h : punto_acumulacion u a)
  :  ε > 0,  N,  n  N, |u n - a| < ε :=
begin
  intros ε hε N,
  rcases h with ⟨φ, hφ1, hφ2⟩,
  cases hφ2 ε hε with N' hN',
  rcases aux2 hφ1 N N' with ⟨m, hm, hm'⟩,
  exact ⟨φ m, hm', hN' _ hm⟩,
end
 
-- 1ª demostración
example
  (hu : suc_cauchy u)
  (ha : punto_acumulacion u a)
  : limite u a :=
begin
  unfold limite,
  intros ε hε,
  unfold suc_cauchy at hu,
  cases hu (ε/2) (half_pos hε) with N hN,
  use N,
  have ha' :  N'  N, |u N' - a| < ε/2,
    apply cerca_acumulacion ha (ε/2) (half_pos hε),
  cases ha' with N' h,
  cases h with hNN' hN',
  intros n hn,
  calc   |u n - a|
       = |(u n - u N') + (u N' - a)| : by ring_nf
   ...  |u n - u N'| + |u N' - a|   : abs_add (u n - u N') (u N' - a)
   ... < ε/2 + |u N' - a|            : add_lt_add_right (hN n hn N' hNN') _
   ... < ε/2 + ε/2                   : add_lt_add_left hN' (ε / 2)
   ... = ε                           : add_halves ε
end
 
-- 2ª demostración
example
  (hu : suc_cauchy u)
  (ha : punto_acumulacion u a)
  : limite u a :=
begin
  intros ε hε,
  cases hu (ε/2) (by linarith) with N hN,
  use N,
  have ha' :  N'  N, |u N' - a| < ε/2,
    apply cerca_acumulacion ha (ε/2) (by linarith),
  rcases ha' with ⟨N', hNN', hN'⟩,
  intros n hn,
  calc  |u n - a|
      = |(u n - u N') + (u N' - a)| : by ring_nf
  ...  |u n - u N'| + |u N' - a|   : by simp [abs_add]
  ... < ε                           : by linarith [hN n hn N' hNN'],
end

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>

Soluciones con Isabelle/HOL
theory "Si_a_es_un_punto_de_acumulacion_de_la_sucesion_de_Cauchy_u,_entonces_a_es_el_limite_de_u"
imports Main HOL.Real
begin
 
definition extraccion :: "(nat ⇒ nat) ⇒ bool" where
  "extraccion φ ⟷ (∀ n m. n < m ⟶ φ n < φ m)"
 
definition limite :: "(nat ⇒ real) ⇒ real ⇒ bool"
  where "limite u a ⟷ (∀ε>0. ∃N. ∀k≥N. ¦u k - a¦ < ε)"
 
definition punto_acumulacion :: "(nat ⇒ real) ⇒ real ⇒ bool"
  where "punto_acumulacion u a ⟷ (∃φ. extraccion φ ∧ limite (u ∘ φ) a)"
 
definition suc_cauchy :: "(nat ⇒ real) ⇒ bool"
  where "suc_cauchy u ⟷ (∀ε>0. ∃k. ∀m≥k. ∀n≥k. ¦u m - u n¦ < ε)"
 
(* Lemas auxiliares *)
 
lemma aux1 :
  assumes "extraccion φ"
  shows   "n ≤ φ n"
proof (induct n)
  show "0 ≤ φ 0" by simp
next
  fix n assume HI : "n ≤ φ n"
  then show "Suc n ≤ φ (Suc n)"
    using assms extraccion_def
    by (metis Suc_leI lessI order_le_less_subst1)
qed
 
lemma aux2 :
  assumes "extraccion φ"
  shows   "∀ N N'. ∃ k ≥ N'. φ k ≥ N"
proof (intro allI)
  fix N N' :: nat
  have "max N N' ≥ N' ∧ φ (max N N') ≥ N"
    by (meson assms aux1 max.bounded_iff max.cobounded2)
  then show "∃k ≥ N'. φ k ≥ N"
    by blast
qed
 
lemma cerca_acumulacion :
  assumes "punto_acumulacion u a"
  shows   "∀ε>0. ∀ N. ∃k≥N. ¦u k - a¦ < ε"
proof (intro allI impI)
  fix ε :: real and N :: nat
  assume "ε > 0"
  obtain φ where1 : "extraccion φ"
             and hφ2 : "limite (u ∘ φ) a"
    using assms punto_acumulacion_def by blast
  obtain N' where hN' : "∀k≥N'. ¦(u ∘ φ) k - a¦ < ε"
    using2 limite_def ‹ε > 0by auto
  obtain m where "m ≥ N' ∧ φ m ≥ N"
    using aux2 hφ1 by blast
  then show "∃k≥N. ¦u k - a¦ < ε"
    using hN' by auto
qed
 
(* Demostración *)
lemma
  assumes "suc_cauchy u"
          "punto_acumulacion u a"
  shows   "limite u a"
proof (unfold limite_def; intro allI impI)
  fix ε :: real
  assume "ε > 0"
  then have "ε/2 > 0"
    by simp
  then obtain N where hN : "∀m≥N. ∀n≥N. ¦u m - u n¦ < ε/2"
    using assms(1) suc_cauchy_def
    by blast
  have "∀k≥N. ¦u k - a¦ < ε"
  proof (intro allI impI)
    fix k
    assume hk : "k ≥ N"
    obtain N' where hN'1 : "N' ≥ N" and
                    hN'2 : "¦u N' - a¦ < ε/2"
      using assms(2) cerca_acumulacion ‹ε/2 > 0by blast
    have "¦u k - a¦ = ¦(u k - u N') + (u N'  - a)¦"
      by simp
    also have "… ≤ ¦u k - u N'¦ + ¦u N'  - a¦"
      by simp
    also have "… < ε/2 + ¦u N'  - a¦"
      using hk hN hN'1 by auto
    also have "… < ε/2 + ε/2"
      using hN'2 by auto
    also have "… = ε"
      by simp
    finally show "¦u k - a¦ < ε" .
  qed
  then show "∃N. ∀k≥N. ¦u k - a¦ < ε"
    by auto
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>

Las subsucesiones tienen el mismo límite que la sucesión

Para extraer una subsucesión se aplica una función de extracción que conserva el orden; por ejemplo, la subsucesión

   uₒ, u₂, u₄, u₆, ...

se ha obtenido con la función de extracción φ tal que φ(n) = 2*n.

En Lean, se puede definir que φ es una función de extracción por

   def extraccion (φ : ℕ → ℕ) :=
     ∀ n m, n < m → φ n < φ m

que v es una subsucesión de u por

   def subsucesion (v u : ℕ → ℝ) :=
     ∃ φ, extraccion φ ∧ v = u ∘ φ

y que a es un límite de u por

   def limite (u : ℕ → ℝ) (a : ℝ) :=
     ∀ ε > 0, ∃ N, ∀ k ≥ N, |u k - a| < ε

Demostrar que las subsucesiones de una sucesión convergente tienen el mismo límite que la sucesión.

Para ello, completar la siguiente teoría de Lean:

import data.real.basic
open nat
 
variables {u v :   }
variable  {a : }
variable  {φ :   }
 
def extraccion (φ :   ):=
   n m, n < m  φ n < φ m
 
def subsucesion (v u :   ) :=
   φ, extraccion φ  v = u  φ
 
notation `|`x`|` := abs x
 
def limite (u :   ) (a : ) :=
   ε > 0,  N,  k  N, |u k - a| < ε
 
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
sorry
Soluciones con Lean
import data.real.basic
open nat
 
variables {u v :   }
variable  {a : }
variable  {φ :   }
 
def extraccion (φ :   ):=
   n m, n < m  φ n < φ m
 
def subsucesion (v u :   ) :=
   φ, extraccion φ  v = u  φ
 
notation `|`x`|` := abs x
 
def limite (u :   ) (a : ) :=
   ε > 0,  N,  k  N, |u k - a| < ε
 
-- En la demostración se usará el siguiente lema.
lemma aux
  (h : extraccion φ)
  :  n, n  φ n :=
begin
  intro n,
  induction n with m HI,
  { exact nat.zero_le (φ 0), },
  { apply nat.succ_le_of_lt,
    calc m  φ m        : HI
       ... < φ (succ m) : h m (m+1) (lt_add_one m), },
end
 
-- 1ª demostración
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
begin
  unfold limite,
  intros ε hε,
  unfold limite at ha,
  cases ha ε hε with N hN,
  use N,
  intros n hn,
  unfold subsucesion at hv,
  rcases hv with ⟨φ, hφ1, hφ2⟩,
  rw hφ2,
  apply hN,
  apply le_trans hn,
  exact aux hφ1 n,
end
 
-- 2ª demostración
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
begin
  intros ε hε,
  cases ha ε hε with N hN,
  use N,
  intros n hn,
  rcases hv with ⟨φ, hφ1, hφ2⟩,
  rw hφ2,
  apply hN,
  exact le_trans hn (aux hφ1 n),
end
 
-- 3ª demostración
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
begin
  intros ε hε,
  cases ha ε hε with N hN,
  use N,
  intros n hn,
  rcases hv with ⟨φ, hφ1, hφ2⟩,
  rw hφ2,
  exact hN (φ n) (le_trans hn (aux hφ1 n)),
end
 
-- 4ª demostración
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
begin
  intros ε hε,
  cases ha ε hε with N hN,
  rcases hv with ⟨φ, hφ1, hφ2⟩,
  rw hφ2,
  use N,
  exact λ n hn, hN (φ n) (le_trans hn (aux hφ1 n)),
end
 
-- 5ª demostración
example
  (hv : subsucesion v u)
  (ha : limite u a)
  : limite v a :=
begin
  intros ε hε,
  cases ha ε hε with N hN,
  rcases hv with ⟨φ, hφ1, hφ2⟩,
  rw hφ2,
  exact ⟨N, λ n hn, hN (φ n) (le_trans hn (aux hφ1 n))⟩,
end

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>

Soluciones con Isabelle/HOL
theory Las_subsucesiones_tienen_el_mismo_limite_que_la_sucesion
imports Main HOL.Real
begin
 
definition extraccion :: "(nat ⇒ nat) ⇒ bool" where
  "extraccion φ ⟷ (∀ n m. n < m ⟶ φ n < φ m)"
 
definition subsucesion :: "(nat ⇒ real) ⇒ (nat ⇒ real) ⇒ bool"
  where "subsucesion v u ⟷ (∃ φ. extraccion φ ∧ v = u ∘ φ)"
 
definition limite :: "(nat ⇒ real) ⇒ real ⇒ bool"
  where "limite u a ⟷ (∀ε>0. ∃N. ∀k≥N. ¦u k - a¦ < ε)"
 
(* En la demostración se usará el siguiente lema *)
lemma aux :
  assumes "extraccion φ"
  shows   "n ≤ φ n"
proof (induct n)
  show "0 ≤ φ 0" by simp
next
  fix n assume HI : "n ≤ φ n"
  then show "Suc n ≤ φ (Suc n)"
    using assms extraccion_def
    by (metis Suc_leI lessI order_le_less_subst1)
qed
 
(* Demostración *)
lemma
  assumes "subsucesion v u"
          "limite u a"
  shows   "limite v a"
proof (unfold limite_def; intro allI impI)
  fix ε :: real
  assume "ε > 0"
  then obtain N where hN : "∀k≥N. ¦u k - a¦ < ε"
    using assms(2) limite_def by auto
  obtain φ where1 : "extraccion φ" and hφ2 : "v = u ∘ φ"
    using assms(1) subsucesion_def by auto
  have "∀k≥N. ¦v k - a¦ < ε"
  proof (intro allI impI)
    fix k
    assume "N ≤ k"
    also have "... ≤ φ k"
      by (simp add: aux hφ1)
    finally have "N ≤ φ k" .
    have "¦v k - a¦ = ¦u (φ k) - a¦"
      using2 by simp
    also have "… < ε"
      using hN ‹N ≤ φ k› by simp
    finally show "¦v k - a¦ < ε" .
  qed
  then show "∃N. ∀k≥N. ¦v k - a¦ < ε"
    by auto
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>

Las funciones de extracción no están acotadas

Para extraer una subsucesión se aplica una función de extracción que conserva el orden; por ejemplo, la subsucesión

   uₒ, u₂, u₄, u₆, ...

se ha obtenido con la función de extracción φ tal que φ(n) = 2*n.

En Lean, se puede definir que φ es una función de extracción por

   def extraccion (φ : ℕ → ℕ) :=
     ∀ n m, n < m → φ n < φ m

Demostrar que las funciones de extracción no está acotadas; es decir, que si φ es una función de extracción, entonces

    ∀ N N', ∃ n ≥ N', φ n ≥ N

Para ello, completar la siguiente teoría de Lean:

import tactic
open nat
 
variable {φ :   }
 
def extraccion (φ :   ) :=
   n m, n < m  φ n < φ m
 
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
sorry
Soluciones con Lean
import tactic
open nat
 
variable {φ :   }
 
def extraccion (φ :   ) :=
   n m, n < m  φ n < φ m
 
lemma aux
  (h : extraccion φ)
  :  n, n  φ n :=
begin
  intro n,
  induction n with m HI,
  { exact nat.zero_le (φ 0), },
  { apply nat.succ_le_of_lt,
    calc m  φ m        : HI
       ... < φ (succ m) : h m (m+1) (lt_add_one m), },
end
 
-- 1ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
begin
  intros N N',
  let n := max N N',
  use n,
  split,
  { exact le_max_right N N', },
  { calc N  n   : le_max_left N N'
       ...  φ n : aux h n, },
end
 
-- 2ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
begin
  intros N N',
  let n := max N N',
  use n,
  split,
  { exact le_max_right N N', },
  { exact le_trans (le_max_left N N')
                   (aux h n), },
end
 
-- 3ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
begin
  intros N N',
  use max N N',
  split,
  { exact le_max_right N N', },
  { exact le_trans (le_max_left N N')
                   (aux h (max N N')), },
end
 
-- 4ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
begin
  intros N N',
  use max N N',
  exact ⟨le_max_right N N',
         le_trans (le_max_left N N')
                  (aux h (max N N'))⟩,
end
 
-- 5ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
λ N N',
  ⟨max N N', ⟨le_max_right N N',
              le_trans (le_max_left N N')
                       (aux h (max N N'))⟩⟩
 
-- 6ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
assume N N',
let n := max N N' in
have h1 : n  N',
  from le_max_right N N',
show  n  N', φ n  N, from
exists.intro n
  (exists.intro h1
    (show φ n  N, from
       calc N  n   : le_max_left N N'
          ...  φ n : aux h n))
 
-- 7ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
assume N N',
let n := max N N' in
have h1 : n  N',
  from le_max_right N N',
show  n  N', φ n  N, from
⟨n, h1, calc N  n   : le_max_left N N'
          ...   φ n : aux h n⟩
 
-- 8ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
assume N N',
let n := max N N' in
have h1 : n  N',
  from le_max_right N N',
show  n  N', φ n  N, from
⟨n, h1, le_trans (le_max_left N N')
                 (aux h (max N N'))⟩
 
-- 9ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
assume N N',
let n := max N N' in
have h1 : n  N',
  from le_max_right N N',
⟨n, h1, le_trans (le_max_left N N')
                 (aux h n)⟩
 
-- 10ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
assume N N',
⟨max N N', le_max_right N N',
           le_trans (le_max_left N N')
                    (aux h (max N N'))⟩
 
-- 11ª demostración
lemma extraccion_mye
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
λ N N',
  ⟨max N N', le_max_right N N',
             le_trans (le_max_left N N')
             (aux h (max N N'))

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>

Soluciones con Isabelle/HOL
theory Las_funciones_de_extraccion_no_estan_acotadas
imports Main
begin
 
definition extraccion :: "(nat ⇒ nat) ⇒ bool" where
  "extraccion φ ⟷ (∀ n m. n < m ⟶ φ n < φ m)"
 
(* En la demostración se usará el siguiente lema *)
lemma aux :
  assumes "extraccion φ"
  shows   "n ≤ φ n"
proof (induct n)
  show "0 ≤ φ 0"
    by simp
next
  fix n
  assume HI : "n ≤ φ n"
  also have "φ n < φ (Suc n)"
    using assms extraccion_def by blast
  finally show "Suc n ≤ φ (Suc n)"
    by simp
qed
 
(* 1ª demostración *)
lemma
  assumes "extraccion φ"
  shows   "∀ N N'. ∃ k ≥ N'. φ k ≥ N"
proof (intro allI)
  fix N N' :: nat
  let ?k = "max N N'"
  have "max N N' ≤ ?k"
    by (rule le_refl)
  then have hk : "N ≤ ?k ∧ N' ≤ ?k"
    by (simp only: max.bounded_iff)
  then have "?k ≥ N'"
    by (rule conjunct2)
  moreover
  have "N ≤ φ ?k"
  proof -
    have "N ≤ ?k"
      using hk by (rule conjunct1)
    also have "… ≤ φ ?k"
      using assms by (rule aux)
    finally show "N ≤ φ ?k"
      by this
  qed
  ultimately have "?k ≥ N' ∧ φ ?k ≥ N"
    by (rule conjI)
  then show "∃k ≥ N'. φ k ≥ N"
    by (rule exI)
qed
 
(* 2ª demostración *)
lemma
  assumes "extraccion φ"
  shows   "∀ N N'. ∃ k ≥ N'. φ k ≥ N"
proof (intro allI)
  fix N N' :: nat
  let ?k = "max N N'"
  have "?k ≥ N'"
    by simp
  moreover
  have "N ≤ φ ?k"
  proof -
    have "N ≤ ?k"
      by simp
    also have "… ≤ φ ?k"
      using assms by (rule aux)
    finally show "N ≤ φ ?k"
      by this
  qed
  ultimately show "∃k ≥ N'. φ k ≥ N"
    by blast
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>