Reseña: Data refinement in Isabelle/HOL

Se ha publicado un artículo sobre automatización del razonamiento en Isabelle/HOL titulado Data refinement in Isabelle/HOL.

Sus autores son Florian Haftmann, Alexander Krauss, Ondřej Kunčar y Tobias Nipkow (de la Universidad Técnica de Munich).

El trabajo se presentará en julio en el ITP 2013 (4th Conference on
Interactive Theorem Proving).

Su resumen es

The paper shows how the code generator of Isabelle/HOL supports data refinement, i.e., providing efficient code for operations on abstract types, e.g., sets or numbers. This allows all tools that employ code generation, e.g., Quickcheck or proof by evaluation, to compute with these abstract types. At the core is an extension of the code generator to deal with data type invariants. In order to automate the process of setting up specific data refinements, two packages for transferring definitions and theorems between types are exploited.

Reseña: Homotopy limits in Coq

Se ha publicado un artículo de razonamiento formalizado en Coq titulado Homotopy limits in Coq.

Sus autores son Jeremy Avigad (de la Carnegie Mellon University), Krzysztof Kapulkin (de la Univ. de Pittsburgh) y Peter LeFanu Lumsdaine.

Su resumen es

Working in Homotopy Type Theory, we provide a systematic study of basic homotopy limits and related constructions. The entire development has been formally verified in the Coq interactive proof assistant.

Las teorías en Coq correspondientes al artículo se encuentra aquí.

Reseña: Formalizing the confluence of orthogonal rewriting systems

Se ha publicado un artículo de razonamiento formalizado en PVS sobre reescritura titulado Formalizing the confluence of orthogonal rewriting systems.

Sus autores son Ana Cristina Rocha Oliveira y Mauricio Ayala-Rincón (de la Universidad de Brasilia)

Su resumen es

Orthogonality is a discipline of programming that in a syntactic manner guarantees determinism of functional specifications. Essentially, orthogonality avoids, on the one side, the inherent ambiguity of non determinism, prohibiting the existence of different rules that specify the same function and that may apply simultaneously (non-ambiguity), and, on the other side, it eliminates the possibility of occurrence of repetitions of variables in the left-hand side of these rules (left linearity). In the theory of term rewriting systems (TRSs) determinism is captured by the well-known property of confluence, that basically states that whenever different computations or simplifications from a term are possible, the computed answers should coincide. Although the proofs are technically elaborated, confluence is well-known to be a consequence of orthogonality. Thus, orthogonality is an important mathematical discipline intrinsic to the specification of recursive functions that is naturally applied in functional programming and specification. Starting from a formalization of the theory of TRSs in the proof assistant PVS, this work describes how confluence of orthogonal TRSs has been formalized, based on axiomatizations of properties of rules, positions and substitutions involved in parallel steps of reduction, in this proof assistant. Proofs for some similar but restricted properties such as the property of confluence of non-ambiguous and (left and right) linear TRSs have been fully formalized.

Reseña: Formalization of the complex number theory in HOL4

Se ha publicado un artículo de razonamiento formalizado en HOL4 sobre números complejos titulado Formalization of the complex number theory in HOL4.

Sus autores son Zhiping Shi, Liming Li, Yong Guan, Xiaoyu Song, Minhua Wu y Jie Zhang.

Su resumen es

In this paper, the theory of complex numbers is formalized and the theorem library of complex numbers is embedded in HOL4, the theorem prover of High Order Logics. The theorem library introduces a data type ℂ by an ℝ × ℝ type abbreviation, and defines arithmetic operations of complex numbers in terms of group and field theories. Moreover, the polar and exponential forms are provided for simplifying the applications in control theory and signal analysis. We define the scalar multiplication of complex numbers and prove some properties about ℝ-module of complex numbers. The theorem library extends the scope of application of HOL4. The developed complex number theory has been released in HOL4 Kananaskis-7.

Reseña: Programming and reasonning with PowerLists in Coq

Se ha publicado un artículo de razonamiento formalizado en Coq sobre programas paralelos titulado Programming and reasonning with PowerLists in Coq.

Sus autores son

Su resumen es

For parallel programs correctness by construction is an essential feature since debugging is almost impossible. To build correct programs by constructions is not a simple task, and usually the methodologies used for this purpose are rather theoretical based on a pen-and-paper style. A better approach could be based on tools and theories that allow a user to develop an efficient parallel application by implementing easily simple programs satisfying conditions, ideally automatically, proved. PowerLists theory and the variants represent a good theoretical base for an approach like this, and Coq proof assistant is a tool that could be used for automatic proofs. The goal of this paper is to model the PowerList theory in Coq, and to use this modelling to program and reason on parallel programs in Coq. This represents the first step in building a framework that ease the development of correct and verifiable parallel programs.

El código de las teorías desarrolladas en Coq se encuentra aquí.