Reseña: Formalized linear algebra over elementary divisor rings in Coq

Se ha publicado un artículo de razonamiento formalizado en Coq sobre álgebra titulado Formalized linear algebra over elementary divisor rings in Coq.

Sus autores son

Su resumen es

This paper presents a Coq formalization of linear algebra over elementary divisor rings, that is, rings where every matrix is equivalent to a matrix in Smith normal form. The main results are the formalization that these rings support essential operations of linear algebra, the classification theorem of finitely presented modules over such rings and the uniqueness of the Smith normal form up to multiplication by units. We present formally verified algorithms computing this normal form on a variety of coefficient structures including Euclidean domains and constructive principal ideal domains. We also study different ways to extend Bézout domains in order to be able to compute the Smith normal form of matrices. The extensions we consider are: adequacy (i.e. the existence of a gdco operation), Krull dimension ≤1 and well-founded strict divisibility.

El trabajo se ha publicado en Logical Methods in Computer Science (Volume 12, Issue 2).

El código de las correspondientes teorías en Coq se encuentra aquí.

Reseña: A survey of interactive theorem proving

Se ha publicado un artículo sobre razonamiento formalizado titulado A survey of interactive theorem proving.

Su autor es Filip Marić (del Automated Reasoning GrOup (ARGO) en la Universidad de Belgrado, Serbia).

Su resumen es

Fully formally verified mathematics and software are long-standing aims that became practically realizable with modern computer tools. Reasoning can be reduced to several basic logical principles, and performed using specialized software, with significant automation. Although full automation is not possible, three main paradigms are represented in formal reasoning tools: (i) decision procedures for special classes of problems, (ii) complete, but potentially unterminating proof search, (iii) checking of proof-sketches given by a human user while automatically constructing simpler proof steps. In this paper, we present a survey of the third approach, embodied in modern interactive theorem provers (ITP), also called proof-assistants. These tools have been successfully developed for more than 40 years, and the current state-of-the-art tools have reached maturity needed to perform real-world large-scale formalizations of mathematics (e.g., Four-Color Theorem, Prime Number Theorem, and Feith-Thompson’s Odd Order theorem) and software correctness (e.g., substantial portions of operating systems and compilers have been verified). We discuss history of ITP, its logical foundations, main features of state-of-the-art systems, and give some details about the most prominent results in the field. We also summarize main results of the researchers from Serbia and personal results of the author.

Este artículo puede servir de lectura complementaria en los cursos de Razonamiento automático, Razonamiento asistido por ordenador y Lógica computacional y teoría de modelos.

Reseña: Real-valued special functions: upper and lower bounds

Se ha publicado un artículo de razonamiento formalizado en Isabelle/HOL titulado Real-valued special functions: upper and lower bounds

Su autor es Lawrence C. Paulson (de la Universidad de Cambridge).

Su resumen es

This development proves upper and lower bounds for several familiar real-valued functions. For sin, cos, exp and sqrt, it defines and verifies infinite families of upper and lower bounds, mostly based on Taylor series expansions. For arctan, ln and exp, it verifies a finite collection of upper and lower bounds, originally obtained from the functions’ continued fraction expansions using the computer algebra system Maple. A common theme in these proofs is to take the difference between a function and its approximation, which should be zero at one point, and then consider the sign of the derivative. The immediate purpose of this development is to verify axioms used by MetiTarski, an automatic theorem prover for real-valued special functions. Crucial to MetiTarski’s operation is the provision of upper and lower bounds for each function of interest.

El trabajo se ha publicado en en AFP (The Archive of Formal Proofs).

El código de las correspondientes teorías se encuentra aquí.

Formalizing Moessner’s theorem and generalizations in Nuprl

Se ha publicado un artículo de razonamiento formalizado en Nuplr titulado Formalizing Moessner’s theorem and generalizations in Nuprl.

Sus autores son

Su resumen es

Moessner’s theorem describes a procedure for generating a sequence of n integer sequences that lead unexpectedly to the sequence of nth powers 1^n, 2^n, 3^n, \dots. Several generalizations of Moessner’s theorem exist. Recently, Kozen and Silva gave an algebraic proof of a general theorem that subsumes Moessner’s original theorem and its known generalizations. In this note, we describe the formalization of this theorem that the first author did in Nuprl. To the best of our knowledge, this is the first existing machine formalization. On the one hand, the formalization remains remarkably close to the original proof. On the other hand, it leads to new insights in the proof, pointing to small gaps and ambiguities that would never raise any objections in pen and pencil proofs, but which must be resolved in machine formalization.

Introducción a la demostración asistida por ordenador con Isabelle/HOL

En el libro Introducción a la demostración asistida por ordenador con Isabelle/HOL he recopilado los temas y relaciones de ejercicios del curso de Razonamiento automático (2012-13).

El curso es una introducción a la demostración asistida por ordenador con Isabelle/HOL y consta de tres niveles.

En el primer nivel se presenta la formalización de las demostraciones por deducción natural. La presentación se basa en la realizada en los cursos de Lógica informática (de 2º del Grado en Informática) y Lógica matemática y fundamentos (de 3º del Grado en Matemáticas), en concreto en los temas de deducción natural proposicional y de primer orden. En este nivel se incluye los 3 primeros temas y las 6 primeras relaciones de ejercicios.

En el segundo nivel se presenta la programación funcional en Isabelle/HOL y el razonamiento sobre programas. La presentación se basa en la introducción a la programación con Haskell realizada en los cursos de Informática (de 1º del Grado en Matemáticas) y Programación declarativa (de 3º del Grado en Informática), en concreto en el tema 8 (para el razonamiento sobre programas) y en los restantes 9 primeros temas (para la programación funcional). En este nivel se incluye los temas 4, 5 y 6 y las relaciones de ejercicios desde la 7 a la 21.

En el tercer nivel se presentan casos de estudios y extensiones de la lógica para trabajar con conjuntos, relaciones y funciones. En este nivel se incluyen los temas 7 y 8 y las relaciones de ejercicios 22 y 23.

Tanto los temas como las relaciones de ejercicios se presentan como teorías de Isabelle/HOL (versión Isabelle2013). Conforme se necesitan se va comentando los elementos del Isabelle/HOL.

De Isabelle2013 se dispone se dispone de versiones libres para Linux, Windows y Mac OS X. Para instalarlo basta seguir la guía de instalación.