RA2012: Verificación de propiedades de la sustitución en Isabelle/HOL
En la clase de hoy del curso de Razonamiento automático se ha resuelto de manera colaborativa ejercicios sobre la demostración de propiedades de la función de sustitución con Isabelle/HOL. Su objetivo es ilustrar el uso del razonamiento por inducción y por casos en Isabelle. Para ca propiedad se presentan distintas demostraciones desde las automáticas a las detalladas.
La teoría con los ejemplos presentados en la clase es la siguiente:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
theory R11 imports Main begin text {* --------------------------------------------------------------------- Ejercicio 1. Definir la función sust :: "'a ⇒ 'a ⇒ 'a list ⇒ 'a list" tal que (sust x y zs) es la lista obtenida sustituyendo cada occurrencia de x por y en la lista zs. Por ejemplo, sust (1::nat) 2 [1,2,3,4,1,2,3,4] = [2,2,3,4,2,2,3,4] --------------------------------------------------------------------- *} fun sust :: "'a ⇒ 'a ⇒ 'a list ⇒ 'a list" where "sust x y [] = []" | "sust x y (z#zs) = (if z=x then y else z)#(sust x y zs)" value "sust (1::nat) 2 [1,2,3,4,1,2,3,4]" -- "= [2,2,3,4,2,2,3,4]" text {* --------------------------------------------------------------------- Ejercicio 2. Demostrar o refutar: sust x y (xs@ys) = (sust x y xs)@(sust x y ys)" --------------------------------------------------------------------- *} -- "La demostración automática es" lemma sust_append: "sust x y (xs@ys) = (sust x y xs)@(sust x y ys)" by (induct xs) auto -- "La demostración estructurada es" lemma sust_append_2: "sust x y (xs @ ys) = (sust x y xs)@(sust x y ys)" proof (induct xs) show "sust x y ([]@ys) = (sust x y [])@(sust x y ys)" by simp next fix a xs assume HI: "sust x y (xs@ys) = (sust x y xs)@(sust x y ys)" show "sust x y ((a#xs)@ys) = (sust x y (a#xs))@(sust x y ys)" proof (cases) assume "x=a" thus "sust x y ((a#xs)@ys) = (sust x y (a#xs))@(sust x y ys)" using HI by auto next assume "x≠a" thus "sust x y ((a#xs)@ys) = (sust x y (a#xs))@(sust x y ys)" using HI by auto qed qed -- "La demostración detallada es" lemma sust_append_3: "sust x y (xs @ ys) = (sust x y xs)@(sust x y ys)" proof (induct xs) show "sust x y ([]@ys) = (sust x y [])@(sust x y ys)" by simp next fix a xs assume HI: "sust x y (xs@ys) = (sust x y xs)@(sust x y ys)" show "sust x y ((a#xs)@ys) = (sust x y (a#xs))@(sust x y ys)" proof (cases) assume "x=a" hence "sust x y ((a#xs)@ys) = sust x y (a#(xs@ys))" by simp also have "… = y#(sust x y (xs@ys))" using `x=a` by simp also have "… = y#((sust x y xs)@(sust x y ys))" using HI by simp also have "… = (y#(sust x y xs))@(sust x y ys)" by simp also have "… = (sust x y (a#xs))@(sust x y ys)" using `x=a` by simp finally show "sust x y ((a#xs)@ys) = (sust x y (a#xs))@(sust x y ys)" . next assume "x≠a" hence "sust x y ((a#xs)@ys) = sust x y (a#(xs@ys))" by simp also have "… = a#(sust x y (xs@ys))" using `x≠a` by simp also have "… = a#((sust x y xs)@(sust x y ys))" using HI by simp also have "… = (a#(sust x y xs))@(sust x y ys)" by simp also have "… = (sust x y (a#xs))@(sust x y ys)" using `x≠a` by simp finally show "sust x y ((a#xs)@ys) = (sust x y (a#xs))@(sust x y ys)" . qed qed text {* --------------------------------------------------------------------- Ejercicio 3. Demostrar o refutar: rev (sust x y zs) = sust x y (rev zs) --------------------------------------------------------------------- *} -- "La demostración automática es" lemma rev_sust: "rev(sust x y zs) = sust x y (rev zs)" by (induct zs) (simp_all add: sust_append) -- "La demostración estructurada es" lemma rev_sust_2: "rev (sust x y zs) = sust x y (rev zs)" proof (induct zs) show "rev (sust x y []) = sust x y (rev [])" by simp next fix a zs assume HI: "rev (sust x y zs) = sust x y (rev zs)" show "rev (sust x y (a#zs)) = sust x y (rev (a#zs))" using HI by (auto simp add: sust_append) qed -- "La demostración detallada es" lemma rev_sust_3: "rev (sust x y zs) = sust x y (rev zs)" proof (induct zs) show "rev (sust x y []) = sust x y (rev [])" by simp next fix a zs assume HI: "rev (sust x y zs) = sust x y (rev zs)" show "rev (sust x y (a#zs)) = sust x y (rev (a#zs))" proof - have "rev (sust x y (a#zs)) = rev ((if x=a then y else a)#(sust x y zs))" by simp also have "… = (rev (sust x y zs))@[if x=a then y else a]" by simp also have "… = (sust x y (rev zs))@[if x=a then y else a]" using HI by simp also have "… = (sust x y (rev zs))@(sust x y [a])" by simp also have "… = sust x y ((rev zs)@[a])" by (simp add: sust_append) also have "… = sust x y (rev (a#zs))" by simp finally show "rev (sust x y (a#zs)) = sust x y (rev (a#zs))" . qed qed -- "La demostración detallada es con casos es" lemma rev_sust_4: "rev (sust x y zs) = sust x y (rev zs)" proof (induct zs) show "rev (sust x y []) = sust x y (rev [])" by simp next fix a zs assume HI: "rev (sust x y zs) = sust x y (rev zs)" show "rev (sust x y (a#zs)) = sust x y (rev (a#zs))" proof (cases "x=a") assume "x=a" hence "rev (sust x y (a#zs)) = rev (y # (sust x y zs))" by simp also have "... = (rev (sust x y zs)) @ [y]" by simp also have "... = (sust x y (rev zs)) @ [y]" using HI by simp also have "... = (sust x y (rev zs)) @ (sust x y [a])" using `x=a` by simp also have "... = sust x y ((rev zs) @ [a])" by (simp add: sust_append) also have "... = sust x y (rev (a#zs))" by simp finally show "rev (sust x y (a#zs)) = sust x y (rev (a#zs))" by simp next assume "x≠a" hence "rev (sust x y (a#zs)) = rev (a # (sust x y zs))" by simp also have "... = (rev (sust x y zs)) @ [a]" by simp also have "... = (sust x y (rev zs)) @ [a]" using HI by simp also have "... = (sust x y (rev zs)) @ (sust x y [a])" using `x≠a` by simp also have "... = sust x y ((rev zs) @ [a])" by (simp add: sust_append) also have "... = sust x y (rev (a#zs))" by simp finally show "rev (sust x y (a#zs)) = sust x y (rev (a#zs))" by simp qed qed text {* --------------------------------------------------------------------- Ejercicio 4. Demostrar o refutar: sust x y (sust u v zs) = sust u v (sust x y zs) --------------------------------------------------------------------- *} lemma "sust x y (sust u v zs) = sust u v (sust x y zs)" quickcheck oops text {* El contraejemplo encontrado es: u = -1 v = 0 x = -1 y = 1 zs = [-1] Efectivamente, sust (-1) 1 (sust (-1) 0 [(-1)]) = [0] sust (-1) 0 (sust (-1) 1 [(-1)]) = [1] *} text {* --------------------------------------------------------------------- Ejercicio 5. Demostrar o refutar: sust y z (sust x y zs) = sust x z zs --------------------------------------------------------------------- *} lemma "sust y z (sust x y zs) = sust x z zs" quickcheck oops text {* El contraejemplo encontrado es: x = 0 y = 1 z = 0 zs = [1] En efecto, sust 1 0 (sust 0 1 [1]) = [0] sust 0 0 [1] = [1] *} |