RA2012: Razonamiento sobre programas con Isabelle/HOL (2)
En la primera parte de la clase de hoy del curso de Razonamiento automático se ha continuado la presentación (iniciada en la clase anterior) de cómo se puede demostrar propiedades de programas funcionales con Isabelle/HOL.
En la presentación se han usado los ejemplos del tema 8 del curso de Informática (de 1º del Grado en Matemáticas).
La teoría con los ejemplos presentados en la clase es la siguiente:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
header {* Tema 5: Razonamiento sobre programas *} theory T5 imports Main begin section {* Inducción correspondiente a una definición recursiva *} text {* --------------------------------------------------------------- Ejemplo 14. Definir la función coge :: nat ⇒ 'a list ⇒ 'a list tal que (coge n xs) es la lista de los n primeros elementos de xs. Por ejemplo, coge 2 [a,c,d,b,e] = [a,c] ------------------------------------------------------------------ *} fun coge :: "nat ⇒ 'a list ⇒ 'a list" where "coge n [] = []" | "coge 0 xs = []" | "coge (Suc n) (x#xs) = x # (coge n xs)" value "coge 2 [a,c,d,b,e]" -- "= [a,c]" text {* --------------------------------------------------------------- Ejemplo 15. Definir la función elimina :: nat ⇒ 'a list ⇒ 'a list tal que (elimina n xs) es la lista obtenida eliminando los n primeros elementos de xs. Por ejemplo, elimina 2 [a,c,d,b,e] = [d,b,e] ------------------------------------------------------------------ *} fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where "elimina n [] = []" | "elimina 0 xs = xs" | "elimina (Suc n) (x#xs) = elimina n xs" value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]" text {* La definición coge genera el esquema de inducción coge.induct: ⟦⋀n. P n []; ⋀x xs. P 0 (x#xs); ⋀n x xs. P n xs ⟹ P (Suc n) (x#xs)⟧ ⟹ P n x Puede verse usando "thm coge.induct". *} text {* --------------------------------------------------------------- Ejemplo 16. (p. 35) Demostrar que conc (coge n xs) (elimina n xs) = xs ------------------------------------------------------------------- *} -- "La demostración estructurada es" lemma "conc (coge n xs) (elimina n xs) = xs" proof (induct rule: coge.induct) fix n show "conc (coge n []) (elimina n []) = []" by simp next fix x xs show "conc (coge 0 (x#xs)) (elimina 0 (x#xs)) = x#xs" by simp next fix n x xs assume HI: "conc (coge n xs) (elimina n xs) = xs" have "conc (coge (Suc n) (x#xs)) (elimina (Suc n) (x#xs)) = conc (x#(coge n xs)) (elimina n xs)" by simp also have "... = x#(conc (coge n xs) (elimina n xs))" by simp also have "... = x#xs" using HI by simp finally show "conc (coge (Suc n) (x#xs)) (elimina (Suc n) (x#xs)) = x#xs" by simp qed -- "La demostración automática es" lemma "conc (coge n xs) (elimina n xs) = xs" by (induct rule: coge.induct) auto section {* Razonamiento por casos *} text {* Distinción de casos sobre listas: · El método de distinción de casos se activa con (cases xs) donde xs es del tipo lista. · "case Nil" es una abreviatura de "assume Nil: xs =[]". · "case Cons" es una abreviatura de "fix ? ?? assume Cons: xs = ? # ??" donde ? y ?? son variables anónimas. *} text {* --------------------------------------------------------------- Ejemplo 17. Definir la función esVacia :: 'a list ⇒ bool tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo, esVacia [] = True esVacia [1] = False ------------------------------------------------------------------ *} fun esVacia :: "'a list ⇒ bool" where "esVacia [] = True" | "esVacia (x#xs) = False" value "esVacia []" -- "= True" value "esVacia [1]" -- "= False" text {* --------------------------------------------------------------- Ejemplo 18 (p. 39) . Demostrar que esVacia xs = esVacia (conc xs xs) ------------------------------------------------------------------- *} -- "La demostración estructurada es" lemma "esVacia xs = esVacia (conc xs xs)" proof (cases xs) assume "xs = []" thus "esVacia xs = esVacia (conc xs xs)" by simp next fix y ys assume "xs = y#ys" thus "esVacia xs = esVacia (conc xs xs)" by simp qed -- "La demostración estructurada simplificad es" lemma "esVacia xs = esVacia (conc xs xs)" proof (cases xs) case Nil thus "esVacia xs = esVacia (conc xs xs)" by simp next case Cons thus "esVacia xs = esVacia (conc xs xs)" by simp qed -- "La demostración automática es" lemma "esVacia xs = esVacia (conc xs xs)" by (cases xs) auto section {* Heurística de generalización *} text {* Heurística de generalización: Cuando se use demostración estructural, cuantificar universalmente las variables libres (o, equivalentemente, considerar las variables libres como variables arbitrarias). *} text {* --------------------------------------------------------------- Ejemplo 19. Definir la función inversaAc :: 'a list ⇒ 'a list tal que (inversaAc xs) es a inversa de xs calculada usando acumuladores. Por ejemplo, inversaAc [a,c,b,e] = [e,b,c,a] ------------------------------------------------------------------ *} fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where "inversaAcAux [] ys = ys" | "inversaAcAux (x#xs) ys = inversaAcAux xs (x#ys)" fun inversaAc :: "'a list ⇒ 'a list" where "inversaAc xs = inversaAcAux xs []" value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]" text {* --------------------------------------------------------------- Ejemplo 20. (p. 44) Demostrar que inversaAcAux xs ys = (inversa xs) @ ys ------------------------------------------------------------------- *} -- "La demostración estructurada es" lemma inversaAcAux_es_inversa: "inversaAcAux xs ys = (inversa xs) @ ys" proof (induct xs arbitrary: ys) show "⋀ys. inversaAcAux [] ys = inversa [] @ ys" by simp next fix a xs assume HI: "⋀ys. inversaAcAux xs ys = inversa xs@ys" show "⋀ys. inversaAcAux (a#xs) ys = inversa (a#xs)@ys" proof - fix ys have "inversaAcAux (a#xs) ys = inversaAcAux xs (a#ys)" by simp also have "… = inversa xs@(a#ys)" using HI by simp also have "… = inversa (a#xs)@ys" by simp finally show "inversaAcAux (a#xs) ys = inversa (a#xs)@ys" by simp qed qed -- "La demostración automática es" lemma "inversaAcAux xs ys = (inversa xs)@ys" by (induct xs arbitrary: ys) auto text {* --------------------------------------------------------------- Ejemplo 21. (p. 43) Demostrar que inversaAc xs = inversa xs ------------------------------------------------------------------- *} -- "La demostración automática es" corollary "inversaAc xs = inversa xs" by (simp add: inversaAcAux_es_inversa) section {* Demostración por inducción para funciones de orden superior *} text {* --------------------------------------------------------------- Ejemplo 22. Definir la función sum :: nat list ⇒ nat tal que (sum xs) es la suma de los elementos de xs. Por ejemplo, sum [3,2,5] = 10 ------------------------------------------------------------------ *} fun sum :: "nat list ⇒ nat" where "sum [] = 0" | "sum (x#xs) = x + sum xs" value "sum [3,2,5]" -- "= 10" text {* --------------------------------------------------------------- Ejemplo 23. Definir la función map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list tal que (map f xs) es la lista obtenida aplicando la función f a los elementos de xs. Por ejemplo, map (λx. 2*x) [3,2,5] = [6,4,10] ------------------------------------------------------------------ *} fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where "map f [] = []" | "map f (x#xs) = (f x) # map f xs" value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]" text {* --------------------------------------------------------------- Ejemplo 24. (p. 45) Demostrar que sum (map (λx. 2*x) xs) = 2 * (sum xs) ------------------------------------------------------------------- *} -- "La demostración estructurada es" lemma "sum (map (λx. 2*x) xs) = 2 * (sum xs)" proof (induct xs) show "sum (map (λx. 2*x) []) = 2 * (sum [])" by simp next fix a xs assume HI: "sum (map (λx. 2*x) xs) = 2 * (sum xs)" have "sum (map (λx. 2*x) (a#xs)) = sum ((2*a)#(map (λx. 2*x) xs))" by simp also have "... = 2*a + sum (map (λx. 2*x) xs)" by simp also have "... = 2*a + 2*(sum xs)" using HI by simp also have "... = 2*(a + sum xs)" by simp also have "... = 2*(sum (a#xs))" by simp finally show "sum (map (λx. 2*x) (a#xs)) = 2*(sum (a#xs))" by simp qed -- "La demostración automática es" lemma "sum (map (λx. 2*x) xs) = 2 * (sum xs)" by (induct xs) auto text {* --------------------------------------------------------------- Ejemplo 25. (p. 48) Demostrar que longitud (map f xs) = longitud xs ------------------------------------------------------------------- *} -- "La demostración estructurada es" lemma "longitud (map f xs) = longitud xs" proof (induct xs) show "longitud (map f []) = longitud []" by simp next fix a xs assume HI: "longitud (map f xs) = longitud xs" have "longitud (map f (a#xs)) = longitud (f a # (map f xs))" by simp also have "... = 1 + longitud (map f xs)" by simp also have "... = 1 + longitud xs" using HI by simp also have "... = longitud (a#xs)" by simp finally show "longitud (map f (a#xs)) = longitud (a#xs)" by simp qed -- "La demostración automática es" lemma "longitud (map f xs) = longitud xs" by (induct xs) auto section {* Referencias *} text {* · J.A. Alonso. "Razonamiento sobre programas" http://goo.gl/R06O3 · G. Hutton. "Programming in Haskell". Cap. 13 "Reasoning about programms". · S. Thompson. "Haskell: the Craft of Functional Programming, 3rd Edition. Cap. 8 "Reasoning about programms". · L. Paulson. "ML for the Working Programmer, 2nd Edition". Cap. 6. "Reasoning about functional programs". *} end |