I1M2015: Análisis de la complejidad de los algoritmos

En la segunda parte de la clase hoy de Informática de 1º del Grado en Matemáticas se ha explicado el tema de análisis de la complejidad de los algoritmos.

Se empezó explicando la notación de Landau y los órdenes de complejidad. A continuación se presentaron varios ejemplos de definiciones de distintos órdenes. En cada ejemplo, se especificó el problema, se definió la función, se hizo una tabla sobre la variación de los tiempos y su correspondiente gráfica, se extrajeron las ecuaciones en recurrencia, se resolvieron con Wolfram Alpha y se demostró por inducción el orden de la definición.

Como resumen, en la siguiente tabla se muestra los ejemplos presentados

I1M2015: Ejercicios de cálculo numérico en Haskell

En la primera parte de la clase de hoy de Informática de 1º del Grado en Matemáticas se han explicado las soluciones de los ejercicios de la 20ª relación, en la que se definen funciones para resolver los siguientes problemas de cálculo numérico:

  • diferenciación numérica,
  • cálculo de la raíz cuadrada mediante el método de Herón,
  • cálculo de los ceros de una función por el método de Newton y
  • cálculo de funciones inversas.

Un aspecto a destacar desde el punto de vista de la programación es el uso de la abstracción de procedimientos.

Los ejercicios, y sus soluciones, se muestran a continuación.
Read More “I1M2015: Ejercicios de cálculo numérico en Haskell”

LMF2016: Sintaxis y semántica de la lógica proposicional

La clase de hoy del curso Lógica matemática y fundamentos ha tenido dos partes.

En la primera parte se ha presentado un panorama de la lógica y sus aplicaciones. También se ha explicado cómo formalizar en lógica proposicional argumentos expresados en lenguaje natural. Para practicar con las formalizaciones se ha presentado APLI2.

En la segunda parte se ha explicado la sintaxis de la lógica proposicional insistiendo en el carácter inductivo del tipo de datos de las fórmulas proposicionales, del procedimiento de definiciones por recursión sobre las fórmulas y de demostración de propiedades por inducción sobre las fórmulas.

Finalmente, se ha iniciado el estudio de la semántica de la lógica proposicional definiendo los booleanos, las interpretaciones, las funciones de verdad de las conectivas y mostrando cómo a partir de dichos conceptos se puede calcular el valor de verdad de una fórmula respecto de una interpretación.

Las transparencias de esta clase son las páginas 1-24 del tema 1.