DAO2011: Razonamiento sobre programas con Isabelle
En la clase de hoy del curso de Demostración asistida por ordenador (DAO2011) se ha estudiado cómo demostrar con Isabelle propiedades de programas funcionales.
La teoría correspondiente a la clase es Tema_2.thy cuyo contenido se muestra a continuación
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
header {* Razonamiento sobre programas en Isabelle *} theory Tema_2 imports Main Efficient_Nat begin text {* En este tema se demuestra con Isabelle las propiedades de los programas funcionales como se expone en el tema 8 del curso "Informática" que puede leerse en http://www.cs.us.es/~jalonso/cursos/i1m/temas/tema-8t.pdf *} text {* ---------------------------------------------------------------- Ejercicio 1. Definir, por recursión, la función longitud :: "'a list ⇒ nat" where tal que (longitud xs) es la longitud de la listas xs. Por ejemplo, longitud [4,2,5] = 3 ------------------------------------------------------------------- *} fun longitud :: "'a list ⇒ nat" where "longitud [] = 0" | "longitud (x#xs) = 1 + longitud xs" value "longitud [4,2,5]" -- "= 3" text {* --------------------------------------------------------------- Ejercicio 2. Demostrar que longitud [4,2,5] = 3 ------------------------------------------------------------------- *} lemma "longitud [4,2,5] = 3" by simp text {* --------------------------------------------------------------- Ejercicio 3. Definir la función fun intercambia :: "'a × 'b ⇒ 'b × 'a" tal que (intercambia p) es el par obtenido intercambiando las componentes del par p. Por ejemplo, "intercambia (2,3) = (3,2) ------------------------------------------------------------------ *} fun intercambia :: "'a × 'b ⇒ 'b × 'a" where "intercambia (x,y) = (y,x)" value "intercambia (2,3)" -- "= (3,2)" text {* --------------------------------------------------------------- Ejercicio 4. Demostrar que intercambia (intercambia (x,y)) = (x,y) ------------------------------------------------------------------- *} lemma "intercambia (intercambia (x,y)) = (x,y)" by simp text {* --------------------------------------------------------------- Ejercicio 5. Definir, por recursión, la función inversa :: "'a list ⇒ 'a list" tal que (inversa xs) es la lista obtenida invirtiendo el orden de los elementos de xs. Por ejemplo, inversa [3,2,5] = [5,2,3] ------------------------------------------------------------------ *} fun inversa :: "'a list ⇒ 'a list" where "inversa [] = []" | "inversa (x#xs) = inversa xs @ [x]" value "inversa [3,2,5]" -- "= [5,2,3]" text {* --------------------------------------------------------------- Ejercicio 6. Demostrar que inversa [x] = [x] ------------------------------------------------------------------- *} lemma "inversa [x] = [x]" by simp text {* --------------------------------------------------------------- Ejercicio 7. Definir la función repite :: "nat ⇒ 'a ⇒ 'a list" where tal que . Por ejemplo, repite 3 5 = [5,5,5] ------------------------------------------------------------------ *} fun repite :: "nat ⇒ 'a ⇒ 'a list" where "repite 0 x = []" | "repite (Suc n) x = x # (repite n x)" value "repite 3 5" -- "= [5,5,5]" text {* --------------------------------------------------------------- Ejercicio 8. Demostrar que longitud (repite n x) = n ------------------------------------------------------------------- *} lemma "longitud (repite n x) = n" by (induct n) auto text {* --------------------------------------------------------------- Ejercicio 9. Definir la función fun conc :: "'a list ⇒ 'a list ⇒ 'a list" tal que . Por ejemplo, conc [2,3] [4,3,5] = [2,3,4,3,5] ------------------------------------------------------------------ *} fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where "conc [] ys = ys" | "conc (x#xs) ys = x # (conc xs ys)" value "conc [2,3] [4,3,5]" -- "= [2,3,4,3,5]" text {* --------------------------------------------------------------- Ejercicio 10. Demostrar que conc xs (conc ys zs) = (conc xs ys) zs ------------------------------------------------------------------- *} lemma "conc xs (conc ys zs) = conc (conc xs ys) zs" by (induct xs) auto text {* --------------------------------------------------------------- Ejercicio 11. Refutar que conc xs ys = conc ys xs ------------------------------------------------------------------- *} lemma "conc xs ys = conc ys xs" quickcheck oops text {* Encuentra el contraejemplo, xs = [a\<^isub>2] ys = [a\<^isub>1] *} text {* --------------------------------------------------------------- Ejercicio 12. Demostrar que conc xs [] = xs ------------------------------------------------------------------- *} lemma "conc xs [] = xs" by (induct xs) auto text {* --------------------------------------------------------------- Ejercicio 13. Demostrar que longitud (conc xs ys) = longitud xs + longitud ys ------------------------------------------------------------------- *} lemma "longitud (conc xs ys) = longitud xs + longitud ys" by (induct xs) auto text {* --------------------------------------------------------------- Ejercicio 14. Definir la función coge :: "nat ⇒ 'a list ⇒ 'a list" tal que (coge n xs) es la lista de los n primeros elementos de xs. Por ejemplo, coge 2 [3,7,5,4] = [3,7] ------------------------------------------------------------------ *} fun coge :: "nat ⇒ 'a list ⇒ 'a list" where "coge n [] = []" | "coge 0 xs = []" | "coge (Suc n) (x#xs) = x # (coge n xs)" value "coge 2 [3,7,5,4]" -- "= [3,7]" text {* --------------------------------------------------------------- Ejercicio 15. Definir la función elimina :: "nat ⇒ 'a list ⇒ 'a list" tal que (coge n xs) es la lista de los n primeros elementos de xs. Por ejemplo, elimina 2 [3,7,5,4] = [5,4] ------------------------------------------------------------------ *} fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where "elimina n [] = []" | "elimina 0 xs = xs" | "elimina (Suc n) (x#xs) = elimina n xs" value "elimina 2 [3,7,5,4]" -- "= [5,4]" text {* --------------------------------------------------------------- Ejercicio 16. Demostrar que conc (coge n xs) (elimina n xs) = xs ------------------------------------------------------------------- *} lemma "conc (coge n xs) (elimina n xs) = xs" by (induct rule: coge.induct) auto text {* coge.induct es el esquema de inducción asociado a la definición de la función coge. Puede verse como sigue: *} thm coge.induct text {* --------------------------------------------------------------- Ejercicio 17. Definir la función esVacia :: "'a list ⇒ bool" tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo, esVacia [] = True esVacia [1] = False ------------------------------------------------------------------ *} fun esVacia :: "'a list ⇒ bool" where "esVacia [] = True" | "esVacia (x#xs) = False" value "esVacia []" -- "= True" value "esVacia [1]" -- "= False" text {* --------------------------------------------------------------- Ejercicio 18. Demostrar que esVacia xs = esVacia (conc xs xs) ------------------------------------------------------------------- *} lemma "esVacia xs = esVacia (conc xs xs)" by (induct xs) auto text {* --------------------------------------------------------------- Ejercicio 19. Definir la función inversaAc :: "'a list ⇒ 'a list" tal que (inversaAc xs) es a inversa de xs calculada usando acumuladores. Por ejemplo, inversaAc [3,2,5] = [5,2,3] ------------------------------------------------------------------ *} fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where "inversaAcAux [] ys = ys" | "inversaAcAux (x#xs) ys = inversaAcAux xs (x#ys)" fun inversaAc :: "'a list ⇒ 'a list" where "inversaAc xs = inversaAcAux xs []" value "inversaAc [3,2,5]" -- "= [5,2,3]" text {* --------------------------------------------------------------- Ejercicio 20. Demostrar que inversaAcAux xs ys = (inversa xs)@ys ------------------------------------------------------------------- *} lemma inversaAcAux_es_inversa: "inversaAcAux xs ys = (inversa xs)@ys" by (induct xs arbitrary: ys) auto text {* --------------------------------------------------------------- Ejercicio 21. Demostrar que inversaAc xs = inversa xs ------------------------------------------------------------------- *} corollary "inversaAc xs = inversa xs" by (simp add: inversaAcAux_es_inversa) text {* --------------------------------------------------------------- Ejercicio 22. Definir la función sum :: "int list ⇒ int" tal que (sum xs) es la suma de los elementos de xs. Por ejemplo, sum [3,2,5] = 10 ------------------------------------------------------------------ *} fun sum :: "int list ⇒ int" where "sum [] = 0" | "sum (x#xs) = x + sum xs" value "sum [3,2,5]" -- "= 10" text {* --------------------------------------------------------------- Ejercicio 23. Definir la función map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list tal que (map f xs) es la lista obtenida aplicando la función f a los elementos de xs. Por ejemplo, map (λx. 2*x) [3,2,5] = [6,4,10] ------------------------------------------------------------------ *} fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where "map f [] = []" | "map f (x#xs) = (f x) # map f xs" value "map (λx. 2*x) [3::int,2,5]" -- "= [6,4,10]" text {* --------------------------------------------------------------- Ejercicio 24. Demostrar que sum (map (λx. 2*x) xs) = 2 * (sum xs) ------------------------------------------------------------------- *} lemma "sum (map (λx. 2*x) xs) = 2 * (sum xs)" by (induct xs) auto text {* --------------------------------------------------------------- Ejercicio 25. Demostrar que longitud (map f xs) = longitud xs ------------------------------------------------------------------- *} lemma "longitud (map f xs) = longitud xs" by (induct xs) auto end |