DAO: La semana en Calculemus (del 25 al 30 de abril)
Esta semana he publicado en Calculemus las soluciones de los siguientes problemas:
- 1. Intersección con su unión
- 2. Distributiva de la intersección respecto de la unión general
- 3. Imagen inversa de la intersección
A continuación se muestran las soluciones.
1. Intersección con su unión
Demostrar que s ∩ (s ∪ t) = s
Para ello, completar la siguiente teoría de Lean:
1 2 3 4 5 6 7 8 |
import data.set.basic open set variable {α : Type} variables s t : set α example : s ∩ (s ∪ t) = s := sorry |
Soluciones con Lean
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import data.set.basic import tactic open set variable {α : Type} variables s t : set α -- 1ª demostración -- =============== example : s ∩ (s ∪ t) = s := begin ext x, split, { intros h, dsimp at h, exact h.1, }, { intro xs, dsimp, split, { exact xs, }, { left, exact xs, }}, end -- 2ª demostración -- =============== example : s ∩ (s ∪ t) = s := begin ext x, split, { intros h, exact h.1, }, { intro xs, split, { exact xs, }, { left, exact xs, }}, end -- 3ª demostración -- =============== example : s ∩ (s ∪ t) = s := begin ext x, split, { intros h, exact h.1, }, { intro xs, split, { exact xs, }, { exact (or.inl xs), }}, end -- 4ª demostración -- =============== example : s ∩ (s ∪ t) = s := begin ext, exact ⟨λ h, h.1, λ xs, ⟨xs, or.inl xs⟩⟩, end -- 5ª demostración -- =============== example : s ∩ (s ∪ t) = s := begin ext, exact ⟨and.left, λ xs, ⟨xs, or.inl xs⟩⟩, end -- 6ª demostración -- =============== example : s ∩ (s ∪ t) = s := begin ext x, split, { rintros ⟨xs, _⟩, exact xs }, { intro xs, use xs, left, exact xs }, end -- 7ª demostración -- =============== example : s ∩ (s ∪ t) = s := begin apply subset_antisymm, { rintros x ⟨hxs,-⟩, exact hxs, }, { intros x hxs, exact ⟨hxs, or.inl hxs⟩, }, end -- 8ª demostración -- =============== example : s ∩ (s ∪ t) = s := -- by suggest inf_sup_self -- 9ª demostración -- =============== example : s ∩ (s ∪ t) = s := -- by hint by finish |
El código de las demostraciones se encuentra en GitHub y puede ejecutarse con el Lean Web editor.
La construcción de las demostraciones se muestra en el siguiente vídeo
Soluciones con Isabelle/HOL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
theory Interseccion_con_su_union imports Main begin (* 1ª demostración *) lemma "s ∩ (s ∪ t) = s" proof (rule equalityI) show "s ∩ (s ∪ t) ⊆ s" proof (rule subsetI) fix x assume "x ∈ s ∩ (s ∪ t)" then show "x ∈ s" by (simp only: IntD1) qed next show "s ⊆ s ∩ (s ∪ t)" proof (rule subsetI) fix x assume "x ∈ s" then have "x ∈ s ∪ t" by (simp only: UnI1) with ‹x ∈ s› show "x ∈ s ∩ (s ∪ t)" by (rule IntI) qed qed (* 2ª demostración *) lemma "s ∩ (s ∪ t) = s" proof show "s ∩ (s ∪ t) ⊆ s" proof fix x assume "x ∈ s ∩ (s ∪ t)" then show "x ∈ s" by simp qed next show "s ⊆ s ∩ (s ∪ t)" proof fix x assume "x ∈ s" then have "x ∈ s ∪ t" by simp then show "x ∈ s ∩ (s ∪ t)" using ‹x ∈ s› by simp qed qed (* 3ª demostración *) lemma "s ∩ (s ∪ t) = s" by (fact Un_Int_eq) (* 4ª demostración *) lemma "s ∩ (s ∪ t) = s" by auto |
2. Distributiva de la intersección respecto de la unión general
Demostrar que s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s)
Para ello, completar la siguiente teoría de Lean:
1 2 3 4 5 6 7 8 9 10 11 12 |
import data.set.basic import data.set.lattice import tactic open set variable {α : Type} variable s : set α variable A : ℕ → set α example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) := sorry |
Soluciones con Lean
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import data.set.basic import data.set.lattice import tactic open set variable {α : Type} variable s : set α variable A : ℕ → set α -- 1ª demostración -- =============== example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) := begin ext x, split, { intro h, rw mem_Union, cases h with xs xUAi, rw mem_Union at xUAi, cases xUAi with i xAi, use i, split, { exact xAi, }, { exact xs, }}, { intro h, rw mem_Union at h, cases h with i hi, cases hi with xAi xs, split, { exact xs, }, { rw mem_Union, use i, exact xAi, }}, end -- 2ª demostración -- =============== example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) := begin ext x, simp, split, { rintros ⟨xs, ⟨i, xAi⟩⟩, exact ⟨⟨i, xAi⟩, xs⟩, }, { rintros ⟨⟨i, xAi⟩, xs⟩, exact ⟨xs, ⟨i, xAi⟩⟩ }, end -- 3ª demostración -- =============== example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) := begin ext x, finish, end -- 4ª demostración -- =============== example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) := by ext; finish -- 5ª demostración -- =============== example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) := by finish [ext_iff] -- 6ª demostración -- =============== example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) := by tidy |
El código de las demostraciones se encuentra en GitHub y puede ejecutarse con el Lean Web editor.
La construcción de las demostraciones se muestra en el siguiente vídeo
Soluciones con Isabelle/HOL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
theory Distributiva_de_la_interseccion_respecto_de_la_union_general imports Main begin section ‹1ª demostración› lemma "s ∩ (⋃ i ∈ I. A i) = (⋃ i ∈ I. (A i ∩ s))" proof (rule equalityI) show "s ∩ (⋃ i ∈ I. A i) ⊆ (⋃ i ∈ I. (A i ∩ s))" proof (rule subsetI) fix x assume "x ∈ s ∩ (⋃ i ∈ I. A i)" then have "x ∈ s" by (simp only: IntD1) have "x ∈ (⋃ i ∈ I. A i)" using ‹x ∈ s ∩ (⋃ i ∈ I. A i)› by (simp only: IntD2) then show "x ∈ (⋃ i ∈ I. (A i ∩ s))" proof (rule UN_E) fix i assume "i ∈ I" assume "x ∈ A i" then have "x ∈ A i ∩ s" using ‹x ∈ s› by (rule IntI) with ‹i ∈ I› show "x ∈ (⋃ i ∈ I. (A i ∩ s))" by (rule UN_I) qed qed next show "(⋃ i ∈ I. (A i ∩ s)) ⊆ s ∩ (⋃ i ∈ I. A i)" proof (rule subsetI) fix x assume "x ∈ (⋃ i ∈ I. A i ∩ s)" then show "x ∈ s ∩ (⋃ i ∈ I. A i)" proof (rule UN_E) fix i assume "i ∈ I" assume "x ∈ A i ∩ s" then have "x ∈ A i" by (rule IntD1) have "x ∈ s" using ‹x ∈ A i ∩ s› by (rule IntD2) moreover have "x ∈ (⋃ i ∈ I. A i)" using ‹i ∈ I› ‹x ∈ A i› by (rule UN_I) ultimately show "x ∈ s ∩ (⋃ i ∈ I. A i)" by (rule IntI) qed qed qed section ‹2ª demostración› lemma "s ∩ (⋃ i ∈ I. A i) = (⋃ i ∈ I. (A i ∩ s))" proof show "s ∩ (⋃ i ∈ I. A i) ⊆ (⋃ i ∈ I. (A i ∩ s))" proof fix x assume "x ∈ s ∩ (⋃ i ∈ I. A i)" then have "x ∈ s" by simp have "x ∈ (⋃ i ∈ I. A i)" using ‹x ∈ s ∩ (⋃ i ∈ I. A i)› by simp then show "x ∈ (⋃ i ∈ I. (A i ∩ s))" proof fix i assume "i ∈ I" assume "x ∈ A i" then have "x ∈ A i ∩ s" using ‹x ∈ s› by simp with ‹i ∈ I› show "x ∈ (⋃ i ∈ I. (A i ∩ s))" by (rule UN_I) qed qed next show "(⋃ i ∈ I. (A i ∩ s)) ⊆ s ∩ (⋃ i ∈ I. A i)" proof fix x assume "x ∈ (⋃ i ∈ I. A i ∩ s)" then show "x ∈ s ∩ (⋃ i ∈ I. A i)" proof fix i assume "i ∈ I" assume "x ∈ A i ∩ s" then have "x ∈ A i" by simp have "x ∈ s" using ‹x ∈ A i ∩ s› by simp moreover have "x ∈ (⋃ i ∈ I. A i)" using ‹i ∈ I› ‹x ∈ A i› by (rule UN_I) ultimately show "x ∈ s ∩ (⋃ i ∈ I. A i)" by simp qed qed qed section ‹3ª demostración› lemma "s ∩ (⋃ i ∈ I. A i) = (⋃ i ∈ I. (A i ∩ s))" by auto end |
3. Imagen inversa de la intersección
En Lean, la imagen inversa de un conjunto s (de elementos de tipo por la función f (de tipo α → β) es el conjunto f ⁻¹' s
de elementos x (de tipo α) tales que f x ∈ s
.
Demostrar que f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v
Para ello, completar la siguiente teoría de Lean:
1 2 3 4 5 6 7 8 9 10 |
import data.set.basic open set variables {α : Type*} {β : Type*} variable f : α → β variables u v : set β example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := sorry |
Soluciones con Lean
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import data.set.basic open set variables {α : Type*} {β : Type*} variable f : α → β variables u v : set β -- 1ª demostración -- =============== example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := begin ext x, split, { intro h, split, { apply mem_preimage.mpr, rw mem_preimage at h, exact mem_of_mem_inter_left h, }, { apply mem_preimage.mpr, rw mem_preimage at h, exact mem_of_mem_inter_right h, }}, { intro h, apply mem_preimage.mpr, split, { apply mem_preimage.mp, exact mem_of_mem_inter_left h,}, { apply mem_preimage.mp, exact mem_of_mem_inter_right h, }}, end -- 2ª demostración -- =============== example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := begin ext x, split, { intro h, split, { simp at *, exact h.1, }, { simp at *, exact h.2, }}, { intro h, simp at *, exact h, }, end -- 3ª demostración -- =============== example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := -- by hint by finish -- 4ª demostración -- =============== example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := -- by library_search preimage_inter -- 5ª demostración -- =============== example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := rfl |
El código de las demostraciones se encuentra en GitHub y puede ejecutarse con el Lean Web editor.
La construcción de las demostraciones se muestra en el siguiente vídeo
Soluciones con Isabelle/HOL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
theory Imagen_inversa_de_la_interseccion imports Main begin section ‹1ª demostración› lemma "f -` (u ∩ v) = f -` u ∩ f -` v" proof (rule equalityI) show "f -` (u ∩ v) ⊆ f -` u ∩ f -` v" proof (rule subsetI) fix x assume "x ∈ f -` (u ∩ v)" then have h : "f x ∈ u ∩ v" by (simp only: vimage_eq) have "x ∈ f -` u" proof - have "f x ∈ u" using h by (rule IntD1) then show "x ∈ f -` u" by (rule vimageI2) qed moreover have "x ∈ f -` v" proof - have "f x ∈ v" using h by (rule IntD2) then show "x ∈ f -` v" by (rule vimageI2) qed ultimately show "x ∈ f -` u ∩ f -` v" by (rule IntI) qed next show "f -` u ∩ f -` v ⊆ f -` (u ∩ v)" proof (rule subsetI) fix x assume h2 : "x ∈ f -` u ∩ f -` v" have "f x ∈ u" proof - have "x ∈ f -` u" using h2 by (rule IntD1) then show "f x ∈ u" by (rule vimageD) qed moreover have "f x ∈ v" proof - have "x ∈ f -` v" using h2 by (rule IntD2) then show "f x ∈ v" by (rule vimageD) qed ultimately have "f x ∈ u ∩ v" by (rule IntI) then show "x ∈ f -` (u ∩ v)" by (rule vimageI2) qed qed section ‹2ª demostración› lemma "f -` (u ∩ v) = f -` u ∩ f -` v" proof show "f -` (u ∩ v) ⊆ f -` u ∩ f -` v" proof fix x assume "x ∈ f -` (u ∩ v)" then have h : "f x ∈ u ∩ v" by simp have "x ∈ f -` u" proof - have "f x ∈ u" using h by simp then show "x ∈ f -` u" by simp qed moreover have "x ∈ f -` v" proof - have "f x ∈ v" using h by simp then show "x ∈ f -` v" by simp qed ultimately show "x ∈ f -` u ∩ f -` v" by simp qed next show "f -` u ∩ f -` v ⊆ f -` (u ∩ v)" proof fix x assume h2 : "x ∈ f -` u ∩ f -` v" have "f x ∈ u" proof - have "x ∈ f -` u" using h2 by simp then show "f x ∈ u" by simp qed moreover have "f x ∈ v" proof - have "x ∈ f -` v" using h2 by simp then show "f x ∈ v" by simp qed ultimately have "f x ∈ u ∩ v" by simp then show "x ∈ f -` (u ∩ v)" by simp qed qed section ‹3ª demostración› lemma "f -` (u ∩ v) = f -` u ∩ f -` v" proof show "f -` (u ∩ v) ⊆ f -` u ∩ f -` v" proof fix x assume h1 : "x ∈ f -` (u ∩ v)" have "x ∈ f -` u" using h1 by simp moreover have "x ∈ f -` v" using h1 by simp ultimately show "x ∈ f -` u ∩ f -` v" by simp qed next show "f -` u ∩ f -` v ⊆ f -` (u ∩ v)" proof fix x assume h2 : "x ∈ f -` u ∩ f -` v" have "f x ∈ u" using h2 by simp moreover have "f x ∈ v" using h2 by simp ultimately have "f x ∈ u ∩ v" by simp then show "x ∈ f -` (u ∩ v)" by simp qed qed section ‹4ª demostración› lemma "f -` (u ∩ v) = f -` u ∩ f -` v" by (simp only: vimage_Int) section ‹5ª demostración› lemma "f -` (u ∩ v) = f -` u ∩ f -` v" by auto end |