I1M2017: Las librerías de vectores y matrices en Haskell

En la segunda parte de la clase de hoy de Informática de 1º del Grado en Matemáticas hemos comentado cómo se puede trabajar eh Haskell con vectores y matrices usando las librerías Data.Vector y Data.Matrix.

Para instalarla con Cabal hay que ejecutar las siguientes órdenes

Los correspondientes manuales, con ejemplos de las funciones, se encuentran en

LMF2017: Sintaxis y semántica de la lógica proposicional (2)

En la clase de hoy del curso Lógica matemática y fundamentos se ha continuado el estudio de la semántica de la lógica proposicional.

Se ha demostrado la equivalencia de los siguientes problemas

  1. decidir si una fórmula es consecuencia lógica de un conjunto finito de fórmulas,
  2. decidir si una fórmula es una tautología,
  3. decidir si una fórmula es insatisfacible y
  4. decidir si un conjunto de fórmulas es inconsistente.

Como aplicación se ha visto la decisión de la corrección de un argumento y la resolución de rompecabezas lógicos. En la solución del rompecabezas se ha explicado el uso del Gateway to Logic.

Las transparencias de esta clase son las páginas 30-34 del tema 1.

LMF2017: Sintaxis y semántica de la lógica proposicional

En la clase de hoy del curso Lógica matemática y fundamentos se ha explicado la sintaxis de la lógica proposicional insistiendo en el carácter inductivo del tipo de datos de las fórmulas proposicionales, del procedimiento de definiciones por recursión sobre las fórmulas y de demostración de propiedades por inducción sobre las fórmulas.

Finalmente, se ha iniciado el estudio de la semántica de la lógica proposicional definiendo los booleanos, las interpretaciones, las funciones de verdad de las conectivas y mostrando cómo a partir de dichos conceptos se puede calcular el valor de verdad de una fórmula respecto de una interpretación.

A partir de lo anterior se han estudiado los modelos de fórmulas, la clasificación semántica de fórmulas (satisfacibles, insatisfacibles, tautologías, contradictorias y contingentes), los problemas SAT y TAUT. Finalmente, se han visto dos algoritmos para la solución de los problemas SAT y TAUT: tablas de verdad y método de Quine.

Otros conceptos definidos son equivalencia de fórmulas, modelos de conjuntos de fórmulas, conjuntos consistentes e inconsistentes y consecuencia lógica.

Finalmente, se ha hecho un ejemplo de formalización usando APLI2

Las transparencias de esta clase son las páginas 1-30 del tema 1.