Automation of mathematical induction as part of the history of logic

Se ha publicado un artículo sobre la historia del razonamiento automático titulado Automation of mathematical induction as part of the history of logic.

Sus autores son

Su resumen es

We review the history of the automation of mathematical induction.

This article is further organized as follows.

§§ 4 and 5 offer a self-contained reference for the readers who are not familiar with the field of mathematical induction and its automation. In § 4 we introduce the essentials of mathematical induction. In § 5 we have to become more formal regarding recursive function definitions, their consistency, termination, and induction templates and schemes.

The main part is § 6, where we present the historically most important systems in automated induction, and discuss the details of software systems for explicit induction, with a focus on the 1970s. After describing the application context in § 6.1, we describe the following Boyer–Moore theorem provers: the Pure LISP Theorem Prover (§ 6.2) Thm (§ 6.3) Nqthm (§ 6.4), and ACL2 (§ 6.5). The most noteworthy remaining explicit- induction systems are sketched in § 6.6.

Alternative approaches to the automation of induction that do not follow the paradigm of explicit induction are discussed in § 7.

After summarizing the lessons learned in § 8, we conclude with § 9.

I1M2013: Ejercicios de definiciones por composición de funciones sobre listas

En la segunda parte de la clase de hoy del curso de Informática de 1º del Grado en Matemáticas hemos comentado las soluciones de los primeros 9 ejercicios 2ª relación sobre definiciones por composición de funciones sobre listas.

Los ejercicios y su solución se muestran a continuación
Read More “I1M2013: Ejercicios de definiciones por composición de funciones sobre listas”

The ontological argument in PVS

Se ha publicado un artículo de razonamiento formalizado en PVS titulado The ontological argument in PVS.

Su autor es John Rushby (del SRI International).

Su resumen es

The Ontological Argument, an 11th Century proof of the existence of God, is a good candidate for Fun With Formal Methods as nearly everyone finds the topic interesting. We formalize the Argument in PVS and verify its correctness. The formalization raises delicate questions in formal logic and provides an opportunity to show how these are handled, soundly and efficiently, by the predicatively-subtyped higher-order logic of PVS and its mechanized support. The simplicity of the Argument, coupled to its bold conclusion, raise interesting issues on the interpretation and application of formal methods in the real world.