Menu Close

Etiqueta: L.simp

Pruebas de equivalencia de definiciones de inversa

En Lean, está definida la función

   reverse : list α → list α

tal que (reverse xs) es la lista obtenida invirtiendo el orden de los elementos de xs. Por ejemplo,

   reverse  [3,2,5,1] = [1,5,2,3]

Su definición es

   def reverse_core : list α → list α → list α
   | []     r := r
   | (a::l) r := reverse_core l (a::r)
 
   def reverse : list α → list α :=
   λ l, reverse_core l []

Una definición alternativa es

   def inversa : list α → list α
   | []        := []
   | (x :: xs) := inversa xs ++ [x]

Demostrar que las dos definiciones son equivalentes; es decir,

   reverse xs = inversa xs

Para ello, completar la siguiente teoría de Lean:

import data.list.basic
open list
 
variable  {α : Type*}
variable  (x : α)
variables (xs ys : list α)
 
def inversa : list α  list α
| []        := []
| (x :: xs) := inversa xs ++ [x]
 
example : reverse xs = inversa xs :=
sorry

[expand title=»Soluciones con Lean»]

import data.list.basic
open list
 
variable  {α : Type*}
variable  (x : α)
variables (xs ys : list α)
 
-- Definición y reglas de simplificación de inversa
-- ================================================
 
def inversa : list α  list α
| []        := []
| (x :: xs) := inversa xs ++ [x]
 
@[simp]
lemma inversa_nil :
  inversa ([] : list α) = [] :=
rfl
 
@[simp]
lemma inversa_cons :
  inversa (x :: xs) = inversa xs ++ [x] :=
rfl
 
-- Reglas de simplificación de reverse_core
-- ========================================
 
@[simp]
lemma reverse_core_nil :
  reverse_core [] ys = ys :=
rfl
 
@[simp]
lemma reverse_core_cons :
  reverse_core (x :: xs) ys = reverse_core xs (x :: ys) :=
rfl
 
-- Lema auxiliar: reverse_core xs ys = (inversa xs) ++ ys
-- ======================================================
 
-- 1ª demostración del lema auxiliar
example :
  reverse_core xs ys = (inversa xs) ++ ys :=
begin
  induction xs with a as HI generalizing ys,
  { calc reverse_core [] ys
         = ys                        : reverse_core_nil ys
     ... = [] ++ ys                  : (nil_append ys).symm
     ... = inversa [] ++ ys          : congr_arg2 (++) inversa_nil.symm rfl, },
  { calc reverse_core (a :: as) ys
         = reverse_core as (a :: ys) : reverse_core_cons a as ys
     ... = inversa as ++ (a :: ys)   : (HI (a :: ys))
     ... = inversa as ++ ([a] ++ ys) : congr_arg2 (++) rfl singleton_append
     ... = (inversa as ++ [a]) ++ ys : (append_assoc (inversa as) [a] ys).symm
     ... = inversa (a :: as) ++ ys   : congr_arg2 (++) (inversa_cons a as).symm rfl},
end
 
-- 2ª demostración del lema auxiliar
example :
  reverse_core xs ys = (inversa xs) ++ ys :=
begin
  induction xs with a as HI generalizing ys,
  { calc reverse_core [] ys
         = ys                        : by rw reverse_core_nil
     ... = [] ++ ys                  : by rw nil_append
     ... = inversa [] ++ ys          : by rw inversa_nil },
  { calc reverse_core (a :: as) ys
         = reverse_core as (a :: ys) : by rw reverse_core_cons
     ... = inversa as ++ (a :: ys)   : by rw (HI (a :: ys))
     ... = inversa as ++ ([a] ++ ys) : by rw singleton_append
     ... = (inversa as ++ [a]) ++ ys : by rw append_assoc
     ... = inversa (a :: as) ++ ys   : by rw inversa_cons },
end
 
-- 3ª demostración del lema auxiliar
example :
  reverse_core xs ys = (inversa xs) ++ ys :=
begin
  induction xs with a as HI generalizing ys,
  { calc reverse_core [] ys
         = ys                        : rfl
     ... = [] ++ ys                  : rfl
     ... = inversa [] ++ ys          : rfl },
  { calc reverse_core (a :: as) ys
         = reverse_core as (a :: ys) : rfl
     ... = inversa as ++ (a :: ys)   : (HI (a :: ys))
     ... = inversa as ++ ([a] ++ ys) : rfl
     ... = (inversa as ++ [a]) ++ ys : by rw append_assoc
     ... = inversa (a :: as) ++ ys   : rfl },
end
 
-- 3ª demostración del lema auxiliar
example :
  reverse_core xs ys = (inversa xs) ++ ys :=
begin
  induction xs with a as HI generalizing ys,
  { calc reverse_core [] ys
         = ys                        : by simp
     ... = [] ++ ys                  : by simp
     ... = inversa [] ++ ys          : by simp },
  { calc reverse_core (a :: as) ys
         = reverse_core as (a :: ys) : by simp
     ... = inversa as ++ (a :: ys)   : (HI (a :: ys))
     ... = inversa as ++ ([a] ++ ys) : by simp
     ... = (inversa as ++ [a]) ++ ys : by simp
     ... = inversa (a :: as) ++ ys   : by simp },
end
 
-- 4ª demostración del lema auxiliar
example :
  reverse_core xs ys = (inversa xs) ++ ys :=
begin
  induction xs with a as HI generalizing ys,
  { by simp, },
  { calc reverse_core (a :: as) ys
         = reverse_core as (a :: ys) : by simp
     ... = inversa as ++ (a :: ys)   : (HI (a :: ys))
     ... = inversa (a :: as) ++ ys   : by simp },
end
 
-- 5ª demostración del lema auxiliar
example :
  reverse_core xs ys = (inversa xs) ++ ys :=
begin
  induction xs with a as HI generalizing ys,
  { simp, },
  { simp [HI (a :: ys)], },
end
 
-- 6ª demostración del lema auxiliar
example :
  reverse_core xs ys = (inversa xs) ++ ys :=
by induction xs generalizing ys ; simp [*]
 
-- 7ª demostración del lema auxiliar
example :
  reverse_core xs ys = (inversa xs) ++ ys :=
begin
  induction xs with a as HI generalizing ys,
  { rw reverse_core_nil,
    rw inversa_nil,
    rw nil_append, },
  { rw reverse_core_cons,
    rw (HI (a :: ys)),
    rw inversa_cons,
    rw append_assoc,
    rw singleton_append, },
end
 
-- 8ª demostración  del lema auxiliar
@[simp]
lemma inversa_equiv :
   xs : list α,  ys, reverse_core xs ys = (inversa xs) ++ ys
| []         := by simp
| (a :: as)  := by simp [inversa_equiv as]
 
-- Demostraciones del lema principal
-- =================================
 
-- 1ª demostración
example : reverse xs = inversa xs :=
calc reverse xs
     = reverse_core xs [] : rfl
 ... = inversa xs ++ []   : by rw inversa_equiv
 ... = inversa xs         : by rw append_nil
 
-- 2ª demostración
example : reverse xs = inversa xs :=
by simp [inversa_equiv, reverse]
 
-- 3ª demostración
example : reverse xs = inversa xs :=
by simp [reverse]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory Pruebas_de_equivalencia_de_definiciones_de_inversa
imports Main
begin
 
(* Definición alternativa *)
(* ====================== *)
 
fun inversa_aux :: "'a list ⇒ 'a list ⇒ 'a list" where
  "inversa_aux [] ys     = ys"
| "inversa_aux (x#xs) ys = inversa_aux xs (x#ys)"
 
fun inversa :: "'a list ⇒ 'a list" where
  "inversa xs = inversa_aux xs []"
 
(* Lema auxiliar: inversa_aux xs ys = (rev xs) @ ys *)
(* ================================================ *)
 
(* 1ª demostración del lema auxiliar *)
lemma
  "inversa_aux xs ys = (rev xs) @ ys"
proof (induct xs arbitrary: ys)
  fix ys :: "'a list"
  have "inversa_aux [] ys = ys"
    by (simp only: inversa_aux.simps(1))
  also have "… = [] @ ys"
    by (simp only: append.simps(1))
  also have "… = rev [] @ ys"
    by (simp only: rev.simps(1))
  finally show "inversa_aux [] ys = rev [] @ ys"
    by this
next
  fix a ::'a and xs :: "'a list"
  assume HI: "⋀ys. inversa_aux xs ys = rev xs@ys"
  show "⋀ys. inversa_aux (a#xs) ys = rev (a#xs)@ys"
  proof -
    fix ys
    have "inversa_aux (a#xs) ys = inversa_aux xs (a#ys)"
      by (simp only: inversa_aux.simps(2))
    also have "… = rev xs@(a#ys)"
      by (simp only: HI)
    also have "… = rev xs @ ([a] @ ys)"
      by (simp only: append.simps)
    also have "… = (rev xs @ [a]) @ ys"
      by (simp only: append_assoc)
    also have "… = rev (a # xs) @ ys"
      by (simp only: rev.simps(2))
    finally show "inversa_aux (a#xs) ys = rev (a#xs)@ys"
      by this
  qed
qed
 
(* 2ª demostración del lema auxiliar *)
lemma
  "inversa_aux xs ys = (rev xs) @ ys"
proof (induct xs arbitrary: ys)
  fix ys :: "'a list"
  have "inversa_aux [] ys = ys" by simp
  also have "… = [] @ ys" by simp
  also have "… = rev [] @ ys" by simp
  finally show "inversa_aux [] ys = rev [] @ ys" .
next
  fix a ::'a and xs :: "'a list"
  assume HI: "⋀ys. inversa_aux xs ys = rev xs@ys"
  show "⋀ys. inversa_aux (a#xs) ys = rev (a#xs)@ys"
  proof -
    fix ys
    have "inversa_aux (a#xs) ys = inversa_aux xs (a#ys)" by simp
    also have "… = rev xs@(a#ys)" using HI by simp
    also have "… = rev xs @ ([a] @ ys)" by simp
    also have "… = (rev xs @ [a]) @ ys" by simp
    also have "… = rev (a # xs) @ ys" by simp
    finally show "inversa_aux (a#xs) ys = rev (a#xs)@ys" .
  qed
qed
 
(* 3ª demostración del lema auxiliar *)
lemma
  "inversa_aux xs ys = (rev xs) @ ys"
proof (induct xs arbitrary: ys)
  fix ys :: "'a list"
  show "inversa_aux [] ys = rev [] @ ys" by simp
next
  fix a ::'a and xs :: "'a list"
  assume HI: "⋀ys. inversa_aux xs ys = rev xs@ys"
  show "⋀ys. inversa_aux (a#xs) ys = rev (a#xs)@ys"
  proof -
    fix ys
    have "inversa_aux (a#xs) ys = rev xs@(a#ys)" using HI by simp
    also have "… = rev (a # xs) @ ys" by simp
    finally show "inversa_aux (a#xs) ys = rev (a#xs)@ys" .
  qed
qed
 
(* 4ª demostración del lema auxiliar *)
lemma
  "inversa_aux xs ys = (rev xs) @ ys"
proof (induct xs arbitrary: ys)
  show "⋀ys. inversa_aux [] ys = rev [] @ ys" by simp
next
  fix a ::'a and xs :: "'a list"
  assume "⋀ys. inversa_aux xs ys = rev xs@ys"
  then show "⋀ys. inversa_aux (a#xs) ys = rev (a#xs)@ys" by simp
qed
 
(* 5ª demostración del lema auxiliar *)
lemma
  "inversa_aux xs ys = (rev xs) @ ys"
proof (induct xs arbitrary: ys)
  case Nil
  then show ?case by simp
next
  case (Cons a xs)
  then show ?case by simp
qed
 
(* 6ª demostración del lema auxiliar *)
lemma inversa_equiv:
  "inversa_aux xs ys = (rev xs) @ ys"
by (induct xs arbitrary: ys) simp_all
 
(* Demostraciones del lema principal *)
(* ================================= *)
 
(* 1ª demostración *)
lemma "inversa xs = rev xs"
proof -
  have "inversa xs = inversa_aux xs []"
    by (rule inversa.simps)
  also have "… = (rev xs) @ []"
    by (rule inversa_equiv)
  also have "… = rev xs"
    by (rule append.right_neutral)
  finally show "inversa xs = rev xs"
    by this
qed
 
(* 2ª demostración *)
lemma "inversa xs = rev xs"
proof -
  have "inversa xs = inversa_aux xs []"  by simp
  also have "… = (rev xs) @ []" by (rule inversa_equiv)
  also have "… = rev xs" by simp
  finally show "inversa xs = rev xs" .
qed
 
(* 3ª demostración *)
lemma "inversa xs = rev xs"
by (simp add: inversa_equiv)
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Pruebas de take n xs ++ drop n xs = xs

En Lean están definidas las funciones

   take : nat → list α → nat
   drop : nat → list α → nat
   (++) : list α → list α → list α

tales que

  • (take n xs) es la lista formada por los n primeros elementos de xs. Por ejemplo,
     take 2 [3,5,1,9,7] = [3,5]
  • (drop n xs) es la lista formada eliminando los n primeros elementos de xs. Por ejemplo,
     drop 2 [3,5,1,9,7] = [1,9,7]
  • (xs ++ ys) es la lista obtenida concatenando xs e ys. Por ejemplo.
     [3,5] ++ [1,9,7] = [3,5,1,9,7]

Dichas funciones están caracterizadas por los siguientes lemas:

   take_zero   : take 0 xs = []
   take_nil    : take n [] = []
   take_cons   : take (succ n) (x :: xs) = x :: take n xs
   drop_zero   : drop 0 xs = xs
   drop_nil    : drop n [] = []
   drop_cons   : drop (succ n) (x :: xs) = drop n xs := rfl
   nil_append  : [] ++ ys = ys
   cons_append : (x :: xs) ++ y = x :: (xs ++ ys)

Demostrar que

   take n xs ++ drop n xs = xs

Para ello, completar la siguiente teoría de Lean:

import data.list.basic
import tactic
open list nat
 
variable {α : Type}
variable (x : α)
variable (xs : list α)
variable (n : )
 
lemma drop_zero : drop 0 xs = xs := rfl
lemma drop_cons : drop (succ n) (x :: xs) = drop n xs := rfl
 
example :
  take n xs ++ drop n xs = xs :=
sorry

[expand title=»Soluciones con Lean»]

import data.list.basic
import tactic
open list
open nat
 
variable {α : Type}
variable (n : )
variable (x : α)
variable (xs : list α)
 
lemma drop_zero : drop 0 xs = xs := rfl
lemma drop_cons : drop (succ n) (x :: xs) = drop n xs := rfl
 
-- 1ª demostración
example :
  take n xs ++ drop n xs = xs :=
begin
  induction n with m HI1 generalizing xs,
  { rw take_zero,
    rw drop_zero,
    rw nil_append, },
  { induction xs with a as HI2,
    { rw take_nil,
      rw drop_nil,
      rw nil_append, },
    { rw take_cons,
      rw drop_cons,
      rw cons_append,
      rw (HI1 as), }, },
end
 
-- 2ª demostración
example :
  take n xs ++ drop n xs = xs :=
begin
  induction n with m HI1 generalizing xs,
  { calc take 0 xs ++ drop 0 xs
         = [] ++ drop 0 xs        : by rw take_zero
     ... = [] ++ xs               : by rw drop_zero
     ... = xs                     : by rw nil_append, },
  { induction xs with a as HI2,
    { calc take (succ m) [] ++ drop (succ m) []
           = ([] : list α) ++ drop (succ m) [] : by rw take_nil
       ... = [] ++ []                          : by rw drop_nil
       ... = []                                : by rw nil_append, },
    { calc take (succ m) (a :: as) ++ drop (succ m) (a :: as)
           = (a :: take m as) ++ drop (succ m) (a :: as) : by rw take_cons
       ... = (a :: take m as) ++ drop m as               : by rw drop_cons
       ... = a :: (take m as ++ drop m as)               : by rw cons_append
       ... = a :: as                                     : by rw (HI1 as), }, },
end
 
-- 3ª demostración
example :
  take n xs ++ drop n xs = xs :=
begin
  induction n with m HI1 generalizing xs,
  { simp, },
  { induction xs with a as HI2,
    { simp, },
    { simp [HI1 as], }, },
end
 
-- 4ª demostración
lemma conc_take_drop_1 :
   (n : ) (xs : list α), take n xs ++ drop n xs = xs
| 0 xs := by calc
    take 0 xs ++ drop 0 xs
        = [] ++ drop 0 xs   : by rw take_zero
    ... = [] ++ xs          : by rw drop_zero
    ... = xs                : by rw nil_append
| (succ m) [] := by calc
    take (succ m) [] ++ drop (succ m) []
        = ([] : list α) ++ drop (succ m) [] : by rw take_nil
    ... = [] ++ []                          : by rw drop_nil
    ... = []                                : by rw nil_append
| (succ m) (a :: as) := by calc
    take (succ m) (a :: as) ++ drop (succ m) (a :: as)
        = (a :: take m as) ++ drop (succ m) (a :: as)    : by rw take_cons
    ... = (a :: take m as) ++ drop m as                  : by rw drop_cons
    ... = a :: (take m as ++ drop m as)                  : by rw cons_append
    ... = a :: as                                        : by rw conc_take_drop_1
 
-- 5ª demostración
lemma conc_take_drop_2 :
   (n : ) (xs : list α), take n xs ++ drop n xs = xs
| 0        xs        := by simp
| (succ m) []        := by simp
| (succ m) (a :: as) := by simp [conc_take_drop_2]
 
-- 6ª demostración
lemma conc_take_drop_3 :
   (n : ) (xs : list α), take n xs ++ drop n xs = xs
| 0        xs        := rfl
| (succ m) []        := rfl
| (succ m) (a :: as) := congr_arg (cons a) (conc_take_drop_3 m as)
 
-- 7ª demostración
example : take n xs ++ drop n xs = xs :=
-- by library_search
take_append_drop n xs
 
-- 8ª demostración
example : take n xs ++ drop n xs = xs :=
by simp

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory "Pruebas_de_take_n_xs_++_drop_n_xs_Ig_xs"
imports Main
begin
 
fun take' :: "nat ⇒ 'a list ⇒ 'a list" where
  "take' n []           = []"
| "take' 0 xs           = []"
| "take' (Suc n) (x#xs) = x # (take' n xs)"
 
fun drop' :: "nat ⇒ 'a list ⇒ 'a list" where
  "drop' n []           = []"
| "drop' 0 xs           = xs"
| "drop' (Suc n) (x#xs) = drop' n xs"
 
(* 1ª demostración *)
lemma "take' n xs @ drop' n xs = xs"
proof (induct rule: take'.induct)
  fix n
  have "take' n [] @ drop' n [] = [] @ drop' n []"
    by (simp only: take'.simps(1))
  also have "… = drop' n []"
    by (simp only: append.simps(1))
  also have "… = []"
    by (simp only: drop'.simps(1))
  finally show "take' n [] @ drop' n [] = []"
    by this
next
  fix x :: 'a and xs :: "'a list"
  have "take' 0 (x#xs) @ drop' 0 (x#xs) =
        [] @ drop' 0 (x#xs)"
    by (simp only: take'.simps(2))
  also have "… = drop' 0 (x#xs)"
    by  (simp only: append.simps(1))
  also have "… = x # xs"
    by  (simp only: drop'.simps(2))
  finally show "take' 0 (x#xs) @ drop' 0 (x#xs) = x#xs"
    by this
next
  fix n :: nat and x :: 'a and xs :: "'a list"
  assume HI: "take' n xs @ drop' n xs = xs"
  have "take' (Suc n) (x # xs) @ drop' (Suc n) (x # xs) =
        (x # (take' n xs)) @ drop' n xs"
    by (simp only: take'.simps(3)
                   drop'.simps(3))
  also have "… = x # (take' n xs @ drop' n xs)"
    by (simp only: append.simps(2))
  also have "… = x#xs"
    by (simp only: HI)
  finally show "take' (Suc n) (x#xs) @ drop' (Suc n) (x#xs) =
                x#xs"
    by this
qed
 
(* 2ª demostración *)
lemma "take' n xs @ drop' n xs = xs"
proof (induct rule: take'.induct)
case (1 n)
  then show ?case by simp
next
  case (2 x xs)
  then show ?case by simp
next
  case (3 n x xs)
  then show ?case by simp
qed
 
(* 3ª demostración *)
lemma "take' n xs @ drop' n xs = xs"
by (induct rule: take'.induct) simp_all
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Pruebas de length (xs ++ ys) = length xs + length ys

En Lean están definidas las funciones

   length : list α → nat
   (++)   : list α → list α → list α

tales que

  • (length xs) es la longitud de xs. Por ejemplo,
     length [2,3,5,3] = 4
  • (xs ++ ys) es la lista obtenida concatenando xs e ys. Por ejemplo.
     [1,2] ++ [2,3,5,3] = [1,2,2,3,5,3]

Dichas funciones están caracterizadas por los siguientes lemas:

   length_nil  : length [] = 0
   length_cons : length (x :: xs) = length xs + 1
   nil_append  : [] ++ ys = ys
   cons_append : (x :: xs) ++ y = x :: (xs ++ ys)

Demostrar que

   length (xs ++ ys) = length xs + length ys

Para ello, completar la siguiente teoría de Lean:

import tactic
open list
 
variable  {α : Type}
variable  (x : α)
variables (xs ys zs : list α)
 
lemma length_nil  : length ([] : list α) = 0 := rfl
 
example :
  length (xs ++ ys) = length xs + length ys :=
sorry

[expand title=»Soluciones con Lean»]

import tactic
open list
 
variable  {α : Type}
variable  (x : α)
variables (xs ys zs : list α)
 
lemma length_nil  : length ([] : list α) = 0 := rfl
 
-- 1ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { rw nil_append,
    rw length_nil,
    rw zero_add, },
  { rw cons_append,
    rw length_cons,
    rw HI,
    rw length_cons,
    rw add_assoc,
    rw add_comm (length ys),
    rw add_assoc, },
end
 
-- 2ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { rw nil_append,
    rw length_nil,
    rw zero_add, },
  { rw cons_append,
    rw length_cons,
    rw HI,
    rw length_cons,
    -- library_search,
    exact add_right_comm (length as) (length ys) 1 },
end
 
-- 3ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { rw nil_append,
    rw length_nil,
    rw zero_add, },
  { rw cons_append,
    rw length_cons,
    rw HI,
    rw length_cons,
    -- by hint,
    linarith, },
end
 
-- 4ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { simp, },
  { simp [HI],
    linarith, },
end
 
-- 5ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { simp, },
  { finish [HI],},
end
 
-- 6ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
by induction xs ; finish [*]
 
-- 7ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { calc length ([] ++ ys)
         = length ys                    : congr_arg length (nil_append ys)
     ... = 0 + length ys                : (zero_add (length ys)).symm
     ... = length [] + length ys        : congr_arg2 (+) length_nil.symm rfl, },
  { calc length ((a :: as) ++ ys)
         = length (a :: (as ++ ys))     : congr_arg length (cons_append a as ys)
     ... = length (as ++ ys) + 1        : length_cons a (as ++ ys)
     ... = (length as + length ys) + 1  : congr_arg2 (+) HI rfl
     ... = (length as + 1) + length ys  : add_right_comm (length as) (length ys) 1
     ... = length (a :: as) + length ys : congr_arg2 (+) (length_cons a as).symm rfl, },
end
 
-- 8ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { calc length ([] ++ ys)
         = length ys                    : by rw nil_append
     ... = 0 + length ys                : (zero_add (length ys)).symm
     ... = length [] + length ys        : by rw length_nil },
  { calc length ((a :: as) ++ ys)
         = length (a :: (as ++ ys))     : by rw cons_append
     ... = length (as ++ ys) + 1        : by rw length_cons
     ... = (length as + length ys) + 1  : by rw HI
     ... = (length as + 1) + length ys  : add_right_comm (length as) (length ys) 1
     ... = length (a :: as) + length ys : by rw length_cons, },
end
 
-- 9ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
list.rec_on xs
  ( show length ([] ++ ys) = length [] + length ys, from
      calc length ([] ++ ys)
           = length ys                    : by rw nil_append
       ... = 0 + length ys                : by exact (zero_add (length ys)).symm
       ... = length [] + length ys        : by rw length_nil )
  ( assume a as,
    assume HI : length (as ++ ys) = length as + length ys,
    show length ((a :: as) ++ ys) = length (a :: as) + length ys, from
      calc length ((a :: as) ++ ys)
           = length (a :: (as ++ ys))     : by rw cons_append
       ... = length (as ++ ys) + 1        : by rw length_cons
       ... = (length as + length ys) + 1  : by rw HI
       ... = (length as + 1) + length ys  : by exact add_right_comm (length as) (length ys) 1
       ... = length (a :: as) + length ys : by rw length_cons)
 
-- 10ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
list.rec_on xs
  ( by simp)
  ( λ a as HI, by simp [HI, add_right_comm])
 
-- 11ª demostración
lemma longitud_conc_1 :
   xs, length (xs ++ ys) = length xs + length ys
| [] := by calc
    length ([] ++ ys)
        = length ys                    : by rw nil_append
    ... = 0 + length ys                : by rw zero_add
    ... = length [] + length ys        : by rw length_nil
| (a :: as) := by calc
    length ((a :: as) ++ ys)
        = length (a :: (as ++ ys))     : by rw cons_append
    ... = length (as ++ ys) + 1        : by rw length_cons
    ... = (length as + length ys) + 1  : by rw longitud_conc_1
    ... = (length as + 1) + length ys  : by exact add_right_comm (length as) (length ys) 1
    ... = length (a :: as) + length ys : by rw length_cons
 
-- 12ª demostración
lemma longitud_conc_2 :
   xs, length (xs ++ ys) = length xs + length ys
| []        := by simp
| (a :: as) := by simp [longitud_conc_2 as, add_right_comm]
 
-- 13ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
-- by library_search
length_append xs ys
 
-- 14ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
by simp

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory "Pruebas_de_length(xs_++_ys)_Ig_length_xs+length_ys"
imports Main
begin
 
(* 1ª demostración *)
lemma "length (xs @ ys) = length xs + length ys"
proof (induct xs)
  have "length ([] @ ys) = length ys"
    by (simp only: append_Nil)
  also have "… = 0 + length ys"
    by (rule add_0 [symmetric])
  also have "… = length [] + length ys"
    by (simp only: list.size(3))
  finally show "length ([] @ ys) = length [] + length ys"
    by this
next
  fix x xs
  assume HI : "length (xs @ ys) = length xs + length ys"
  have "length ((x # xs) @ ys) =
        length (x # (xs @ ys))"
    by (simp only: append_Cons)
  also have "… = length (xs @ ys) + 1"
    by (simp only: list.size(4))
  also have "… = (length xs + length ys) + 1"
    by (simp only: HI)
  also have "… = (length xs + 1) + length ys"
    by (simp only: add.assoc add.commute)
  also have "… = length (x # xs) + length ys"
    by (simp only: list.size(4))
  then show "length ((x # xs) @ ys) = length (x # xs) + length ys"
    by simp
qed
 
(* 2ª demostración *)
lemma "length (xs @ ys) = length xs + length ys"
proof (induct xs)
  show "length ([] @ ys) = length [] + length ys"
    by simp
next
  fix x xs
  assume "length (xs @ ys) = length xs + length ys"
  then show "length ((x # xs) @ ys) = length (x # xs) + length ys"
    by simp
qed
 
(* 3ª demostración *)
lemma "length (xs @ ys) = length xs + length ys"
proof (induct xs)
  case Nil
  then show ?case by simp
next
  case (Cons a xs)
  then show ?case by simp
qed
 
(* 4ª demostración *)
lemma "length (xs @ ys) = length xs + length ys"
by (induct xs) simp_all
 
(* 5ª demostración *)
lemma "length (xs @ ys) = length xs + length ys"
by (fact length_append)
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Asociatividad de la concatenación de listas

En Lean la operación de concatenación de listas se representa por (++) y está caracterizada por los siguientes lemas

   nil_append  : [] ++ ys = ys
   cons_append : (x :: xs) ++ y = x :: (xs ++ ys)

Demostrar que la concatenación es asociativa; es decir,

   xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

Para ello, completar la siguiente teoría de Lean:

import data.list.basic
import tactic
open list
 
variable  {α : Type}
variable  (x : α)
variables (xs ys zs : list α)
 
example :
  xs ++ (ys ++ zs) = (xs ++ ys) ++ zs :=
sorry

[expand title=»Soluciones con Lean»]

import data.list.basic
import tactic
open list
 
variable  {α : Type}
variable  (x : α)
variables (xs ys zs : list α)
 
-- 1ª demostración
example :
  xs ++ (ys ++ zs) = (xs ++ ys) ++ zs :=
begin
  induction xs with a as HI,
  { calc [] ++ (ys ++ zs)
         = ys ++ zs                : append.equations._eqn_1 (ys ++ zs)
     ... = ([] ++ ys) ++ zs        : congr_arg2 (++) (append.equations._eqn_1 ys) rfl, },
  { calc (a :: as) ++ (ys ++ zs)
         = a :: (as ++ (ys ++ zs)) : append.equations._eqn_2 a as (ys ++ zs)
     ... = a :: ((as ++ ys) ++ zs) : congr_arg2 (::) rfl HI
     ... = (a :: (as ++ ys)) ++ zs : (append.equations._eqn_2 a (as ++ ys) zs).symm
     ... = ((a :: as) ++ ys) ++ zs : congr_arg2 (++) (append.equations._eqn_2 a as ys).symm rfl, },
end
 
-- 2ª demostración
example :
  xs ++ (ys ++ zs) = (xs ++ ys) ++ zs :=
begin
  induction xs with a as HI,
  { calc [] ++ (ys ++ zs)
         = ys ++ zs                : nil_append (ys ++ zs)
     ... = ([] ++ ys) ++ zs        : congr_arg2 (++) (nil_append ys) rfl, },
  { calc (a :: as) ++ (ys ++ zs)
         = a :: (as ++ (ys ++ zs)) : cons_append a as (ys ++ zs)
     ... = a :: ((as ++ ys) ++ zs) : congr_arg2 (::) rfl HI
     ... = (a :: (as ++ ys)) ++ zs : (cons_append a (as ++ ys) zs).symm
     ... = ((a :: as) ++ ys) ++ zs : congr_arg2 (++) (cons_append a as ys).symm rfl, },
end
 
-- 3ª demostración
example :
  xs ++ (ys ++ zs) = (xs ++ ys) ++ zs :=
begin
  induction xs with a as HI,
  { calc [] ++ (ys ++ zs)
         = ys ++ zs                : by rw nil_append
     ... = ([] ++ ys) ++ zs        : by rw nil_append, },
  { calc (a :: as) ++ (ys ++ zs)
         = a :: (as ++ (ys ++ zs)) : by rw cons_append
     ... = a :: ((as ++ ys) ++ zs) : by rw HI
     ... = (a :: (as ++ ys)) ++ zs : by rw cons_append
     ... = ((a :: as) ++ ys) ++ zs : by rw ← cons_append, },
end
 
-- 4ª demostración
example :
  xs ++ (ys ++ zs) = (xs ++ ys) ++ zs :=
begin
  induction xs with a as HI,
  { calc [] ++ (ys ++ zs)
         = ys ++ zs                : rfl
     ... = ([] ++ ys) ++ zs        : rfl, },
  { calc (a :: as) ++ (ys ++ zs)
         = a :: (as ++ (ys ++ zs)) : rfl
     ... = a :: ((as ++ ys) ++ zs) : by rw HI
     ... = (a :: (as ++ ys)) ++ zs : rfl
     ... = ((a :: as) ++ ys) ++ zs : rfl, },
end
 
-- 5ª demostración
example :
  xs ++ (ys ++ zs) = (xs ++ ys) ++ zs :=
begin
  induction xs with a as HI,
  { calc [] ++ (ys ++ zs)
         = ys ++ zs                : by simp
     ... = ([] ++ ys) ++ zs        : by simp, },
  { calc (a :: as) ++ (ys ++ zs)
         = a :: (as ++ (ys ++ zs)) : by simp
     ... = a :: ((as ++ ys) ++ zs) : congr_arg (cons a) HI
     ... = (a :: (as ++ ys)) ++ zs : by simp
     ... = ((a :: as) ++ ys) ++ zs : by simp, },
end
 
-- 6ª demostración
example :
  xs ++ (ys ++ zs) = (xs ++ ys) ++ zs :=
begin
  induction xs with a as HI,
  { by simp, },
  { by exact (cons_inj a).mpr HI, },
end
 
-- 7ª demostración
example :
  xs ++ (ys ++ zs) = (xs ++ ys) ++ zs :=
begin
  induction xs with a as HI,
  { rw nil_append,
    rw nil_append, },
  { rw cons_append,
    rw HI,
    rw cons_append,
    rw cons_append, },
end
 
-- 8ª demostración
example :
  xs ++ (ys ++ zs) = (xs ++ ys) ++ zs :=
list.rec_on xs
  ( show [] ++ (ys ++ zs) = ([] ++ ys) ++ zs,
      from calc
        [] ++ (ys ++ zs)
            = ys ++ zs         : by rw nil_append
        ... = ([] ++ ys) ++ zs : by rw nil_append )
  ( assume a as,
    assume HI : as ++ (ys ++ zs) = (as ++ ys) ++ zs,
    show (a :: as) ++ (ys  ++ zs) = ((a :: as) ++ ys) ++ zs,
      from calc
        (a :: as) ++ (ys ++ zs)
            = a :: (as ++ (ys ++ zs)) : by rw cons_append
        ... = a :: ((as ++ ys) ++ zs) : by rw HI
        ... = (a :: (as ++ ys)) ++ zs : by rw cons_append
        ... = ((a :: as) ++ ys) ++ zs : by rw ← cons_append)
 
-- 9ª demostración
example :
  xs ++ (ys ++ zs) = (xs ++ ys) ++ zs :=
list.rec_on xs
  (by simp)
  (by simp [*])
 
-- 10ª demostración
lemma conc_asoc_1 :
   xs, xs ++ (ys ++ zs) = (xs ++ ys) ++ zs
| [] := by calc
    [] ++ (ys ++ zs)
        = ys ++ zs         : by rw nil_append
    ... = ([] ++ ys) ++ zs : by rw nil_append
| (a :: as) := by calc
    (a :: as) ++ (ys ++ zs)
        = a :: (as ++ (ys ++ zs)) : by rw cons_append
    ... = a :: ((as ++ ys) ++ zs) : by rw conc_asoc_1
    ... = (a :: (as ++ ys)) ++ zs : by rw cons_append
    ... = ((a :: as) ++ ys) ++ zs : by rw ← cons_append
 
-- 11ª demostración
example :
  (xs ++ ys) ++ zs = xs ++ (ys ++ zs) :=
-- by library_search
append_assoc xs ys zs
 
-- 12ª demostración
example :
  (xs ++ ys) ++ zs = xs ++ (ys ++ zs) :=
by induction xs ; simp [*]
 
-- 13ª demostración
example :
  (xs ++ ys) ++ zs = xs ++ (ys ++ zs) :=
by simp

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory Asociatividad_de_la_concatenacion_de_listas
imports Main
begin
 
(* 1ª demostración *)
lemma "xs @ (ys @ zs) = (xs @ ys) @ zs"
proof (induct xs)
  have "[] @ (ys @ zs) = ys @ zs"
    by (simp only: append_Nil)
  also have "… = ([] @ ys) @ zs"
    by (simp only: append_Nil)
  finally show "[] @ (ys @ zs) = ([] @ ys) @ zs"
    by this
next
  fix x xs
  assume HI : "xs @ (ys @ zs) = (xs @ ys) @ zs"
  have "(x # xs) @ (ys @ zs) = x # (xs @ (ys @ zs))"
    by (simp only: append_Cons)
  also have "… = x # ((xs @ ys) @ zs)"
    by (simp only: HI)
  also have "… = (x # (xs @ ys)) @ zs"
    by (simp only: append_Cons)
  also have "… = ((x # xs) @ ys) @ zs"
    by (simp only: append_Cons)
  finally show "(x # xs) @ (ys @ zs) = ((x # xs) @ ys) @ zs"
    by this
qed
 
(* 2ª demostración *)
lemma "xs @ (ys @ zs) = (xs @ ys) @ zs"
proof (induct xs)
  have "[] @ (ys @ zs) = ys @ zs" by simp
  also have "… = ([] @ ys) @ zs" by simp
  finally show "[] @ (ys @ zs) = ([] @ ys) @ zs" .
next
  fix x xs
  assume HI : "xs @ (ys @ zs) = (xs @ ys) @ zs"
  have "(x # xs) @ (ys @ zs) = x # (xs @ (ys @ zs))" by simp
  also have "… = x # ((xs @ ys) @ zs)" by simp
  also have "… = (x # (xs @ ys)) @ zs" by simp
  also have "… = ((x # xs) @ ys) @ zs" by simp
  finally show "(x # xs) @ (ys @ zs) = ((x # xs) @ ys) @ zs" .
qed
 
(* 3ª demostración *)
lemma "xs @ (ys @ zs) = (xs @ ys) @ zs"
proof (induct xs)
  show "[] @ (ys @ zs) = ([] @ ys) @ zs" by simp
next
  fix x xs
  assume "xs @ (ys @ zs) = (xs @ ys) @ zs"
  then show "(x # xs) @ (ys @ zs) = ((x # xs) @ ys) @ zs" by simp
qed
 
(* 4ª demostración *)
lemma "xs @ (ys @ zs) = (xs @ ys) @ zs"
proof (induct xs)
  case Nil
  then show ?case by simp
next
  case (Cons a xs)
  then show ?case by simp
qed
 
(* 5ª demostración *)
lemma "xs @ (ys @ zs) = (xs @ ys) @ zs"
  by (rule append_assoc [symmetric])
 
(* 6ª demostración *)
lemma "xs @ (ys @ zs) = (xs @ ys) @ zs"
  by (induct xs) simp_all
 
(* 7ª demostración *)
lemma "xs @ (ys @ zs) = (xs @ ys) @ zs"
  by simp
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Pruebas de length (repeat x n) = n

En Lean están definidas las funciones length y repeat tales que

  • (length xs) es la longitud de la lista xs. Por ejemplo,
     length [1,2,5,2] = 4
  • (repeat x n) es la lista que tiene el elemento x n veces. Por ejemplo,
     repeat 7 3 = [7, 7, 7]

Demostrar que

   length (repeat x n) = n

Para ello, completar la siguiente teoría de Lean:

import data.list.basic
open nat
open list
 
variable {α : Type}
variable (x : α)
variable (n : )
 
example :
  length (repeat x n) = n :=
sorry

[expand title=»Soluciones con Lean»]

import data.list.basic
open nat
open list
 
set_option pp.structure_projections false
 
variable {α : Type}
variable (x : α)
variable (n : )
 
-- 1ª demostración
example :
  length (repeat x n) = n :=
begin
  induction n with n HI,
  { calc length (repeat x 0)
          = length []                : congr_arg length (repeat.equations._eqn_1 x)
      ... = 0                        : length.equations._eqn_1 },
  { calc length (repeat x (succ n))
         = length (x :: repeat x n)  : congr_arg length (repeat.equations._eqn_2 x n)
     ... = length (repeat x n) + 1   : length.equations._eqn_2 x (repeat x n)
     ... = n + 1                     : congr_arg2 (+) HI rfl
     ... = succ n                    : rfl, },
end
 
-- 2ª demostración
example :
  length (repeat x n) = n :=
begin
  induction n with n HI,
  { calc length (repeat x 0)
          = length []                : rfl
      ... = 0                        : rfl },
  { calc length (repeat x (succ n))
         = length (x :: repeat x n)  : rfl
     ... = length (repeat x n) + 1   : rfl
     ... = n + 1                     : by rw HI
     ... = succ n                    : rfl, },
end
 
-- 3ª demostración
example : length (repeat x n) = n :=
begin
  induction n with n HI,
  { refl, },
  { dsimp,
    rw HI, },
end
 
-- 4ª demostración
example : length (repeat x n) = n :=
begin
  induction n with n HI,
  { simp, },
  { simp [HI], },
end
 
-- 5ª demostración
example : length (repeat x n) = n :=
by induction n ; simp [*]
 
-- 6ª demostración
example : length (repeat x n) = n :=
nat.rec_on n
  ( show length (repeat x 0) = 0, from
      calc length (repeat x 0)
           = length []                : rfl
       ... = 0                        : rfl )
  ( assume n,
    assume HI : length (repeat x n) = n,
    show length (repeat x (succ n)) = succ n, from
      calc length (repeat x (succ n))
           = length (x :: repeat x n) : rfl
       ... = length (repeat x n) + 1  : rfl
       ... = n + 1                    : by rw HI
       ... = succ n                   : rfl )
 
-- 7ª demostración
example : length (repeat x n) = n :=
nat.rec_on n
  ( by simp )
  ( λ n HI, by simp [HI])
 
-- 8ª demostración
example : length (repeat x n) = n :=
length_repeat x n
 
-- 9ª demostración
example : length (repeat x n) = n :=
by simp
 
-- 10ª demostración
lemma length_repeat_1 :
   n, length (repeat x n) = n
| 0 := by calc length (repeat x 0)
               = length ([] : list α)         : rfl
           ... = 0                            : rfl
| (n+1) := by calc length (repeat x (n + 1))
                   = length (x :: repeat x n) : rfl
               ... = length (repeat x n) + 1  : rfl
               ... = n + 1                    : by rw length_repeat_1
 
-- 11ª demostración
lemma length_repeat_2 :
   n, length (repeat x n) = n
| 0     := by simp
| (n+1) := by simp [*]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory "Pruebas_de_length_(repeat_x_n)_Ig_n"
imports Main
begin
 
(* 1ª demostración⁾*)
lemma "length (replicate n x) = n"
proof (induct n)
  have "length (replicate 0 x) = length ([] :: 'a list)"
    by (simp only: replicate.simps(1))
  also have "… = 0"
    by (rule list.size(3))
  finally show "length (replicate 0 x) = 0"
    by this
next
  fix n
  assume HI : "length (replicate n x) = n"
  have "length (replicate (Suc n) x) =
        length (x # replicate n x)"
    by (simp only: replicate.simps(2))
  also have "… = length (replicate n x) + 1"
    by (simp only: list.size(4))
  also have "… = Suc n"
    by (simp only: HI)
  finally show "length (replicate (Suc n) x) = Suc n"
    by this
qed
 
(* 2ª demostración⁾*)
lemma "length (replicate n x) = n"
proof (induct n)
  show "length (replicate 0 x) = 0"
    by simp
next
  fix n
  assume "length (replicate n x) = n"
  then show "length (replicate (Suc n) x) = Suc n"
    by simp
qed
 
(* 3ª demostración⁾*)
lemma "length (replicate n x) = n"
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n)
  then show ?case by simp
qed
 
(* 4ª demostración⁾*)
lemma "length (replicate n x) = n"
  by (rule length_replicate)
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]