Menu Close

Etiqueta: L.le_antisymm

El punto de acumulación de las sucesiones convergente es su límite

Para extraer una subsucesión se aplica una función de extracción que conserva el orden; por ejemplo, la subsucesión

   uₒ, u₂, u₄, u₆, ...

se ha obtenido con la función de extracción φ tal que φ(n) = 2*n.

En Lean, se puede definir que φ es una función de extracción por

   def extraccion (φ : ℕ → ℕ) :=
     ∀ n m, n < m → φ n < φ m

que a es un límite de u por

   def limite (u : ℕ → ℝ) (a : ℝ) :=
     ∀ ε > 0, ∃ N, ∀ k ≥ N, |u k - a| < ε

que u es convergente por

   def convergente (u : ℕ → ℝ) :=
     ∃ a, limite u a

que a es un punto de acumulación de u por

   def punto_acumulacion (u : ℕ → ℝ) (a : ℝ) :=
     ∃ φ, extraccion φ ∧ limite (u ∘ φ) a

Demostrar que si u es una sucesión convergente y a es un punto de acumulación de u, entonces a es un límite de u.

Para ello, completar la siguiente teoría de Lean:

import data.real.basic
open nat
 
variable  {u :   }
variables {a : }
 
def extraccion (φ :   ) :=
   n m, n < m  φ n < φ m
 
notation `|`x`|` := abs x
 
def limite (u :   ) (a : ) :=
   ε > 0,  N,  k  N, |u k - a| < ε
 
def convergente (u :   ) :=
   a, limite u a
 
def punto_acumulacion (u :   ) (a : ) :=
   φ, extraccion φ  limite (u  φ) a
 
example
  (hu : convergente u)
  (ha : punto_acumulacion u a)
  : limite u a :=
sorry

[expand title=»Soluciones con Lean»]

import data.real.basic
open nat
 
variable  {u :   }
variables {a : }
 
def extraccion (φ :   ) :=
   n m, n < m  φ n < φ m
 
notation `|`x`|` := abs x
 
def limite (u :   ) (a : ) :=
   ε > 0,  N,  k  N, |u k - a| < ε
 
def convergente (u :   ) :=
   a, limite u a
 
def punto_acumulacion (u :   ) (a : ) :=
   φ, extraccion φ  limite (u  φ) a
 
-- Lemas auxiliares
-- ================
 
lemma unicidad_limite_aux
  {a b: }
  (ha : limite u a)
  (hb : limite u b)
  : b  a :=
begin
  by_contra h,
  set ε := b - a with hε,
  cases ha (ε/2) (by linarith) with A hA,
  cases hb (ε/2) (by linarith) with B hB,
  set N := max A B with hN,
  have hAN : A  N := le_max_left A B,
  have hBN : B  N := le_max_right A B,
  specialize hA N hAN,
  specialize hB N hBN,
  rw abs_lt at hA hB,
  linarith,
end
 
lemma unicidad_limite
  {a b: }
  (ha : limite u a)
  (hb : limite u b)
  : a = b :=
le_antisymm (unicidad_limite_aux hb ha)
            (unicidad_limite_aux ha hb)
 
lemma limite_subsucesion_aux
  {φ :   }
  (h : extraccion φ)
  :  n, n  φ n :=
begin
  intro n,
  induction n with m HI,
  { exact nat.zero_le (φ 0), },
  { apply nat.succ_le_of_lt,
    calc m  φ m        : HI
       ... < φ (succ m) : h m (m+1) (lt_add_one m), },
end
 
lemma limite_subsucesion
  {φ :   }
  {a : }
  (h : limite u a)
  (hφ : extraccion φ)
  : limite (u  φ) a :=
begin
  intros ε hε,
  cases h ε hε with N hN,
  use N,
  intros k hk,
  calc |(u  φ) k - a|
       = |u (φ k) - a| : rfl
   ... < ε             : hN (φ k) _,
  calc φ k
        k : limite_subsucesion_aux hφ k
   ...  N : hk,
end
 
-- 1ª demostración
example
  (hu : convergente u)
  (ha : punto_acumulacion u a)
  : limite u a :=
begin
  unfold convergente at hu,
  cases hu with b hb,
  convert hb,
  unfold punto_acumulacion at ha,
  rcases ha with ⟨φ, hφ₁, hφ₂⟩,
  have hφ₃ : limite (u  φ) b,
    from limite_subsucesion hb hφ₁,
  exact unicidad_limite hφ₂ hφ₃,
end
 
-- 1ª demostración
example
  (hu : convergente u)
  (ha : punto_acumulacion u a)
  : limite u a :=
begin
  cases hu with b hb,
  convert hb,
  rcases ha with ⟨φ, hφ₁, hφ₂⟩,
  apply unicidad_limite hφ₂ _,
  exact limite_subsucesion hb hφ₁,
end
 
-- 2ª demostración
example
  (hu : convergente u)
  (ha : punto_acumulacion u a)
  : limite u a :=
begin
  cases hu with b hb,
  convert hb,
  rcases ha with ⟨φ, hφ₁, hφ₂⟩,
  exact unicidad_limite hφ₂ (limite_subsucesion hb hφ₁),
end

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory El_punto_de_acumulacion_de_las_sucesiones_convergente_es_su_limite
imports Main HOL.Real
begin
 
definition extraccion :: "(nat ⇒ nat) ⇒ bool" where
  "extraccion φ ⟷ (∀ n m. n < m ⟶ φ n < φ m)"
 
definition subsucesion :: "(nat ⇒ real) ⇒ (nat ⇒ real) ⇒ bool"
  where "subsucesion v u ⟷ (∃ φ. extraccion φ ∧ v = u ∘ φ)"
 
definition limite :: "(nat ⇒ real) ⇒ real ⇒ bool" where
  "limite u c ⟷ (∀ε>0. ∃k. ∀n≥k. ¦u n - c¦ < ε)"
 
definition convergente :: "(nat ⇒ real) ⇒ bool" where
  "convergente u ⟷ (∃ a. limite u a)"
 
definition punto_acumulacion :: "(nat ⇒ real) ⇒ real ⇒ bool"
  where "punto_acumulacion u a ⟷ (∃φ. extraccion φ ∧ limite (u ∘ φ) a)"
 
(* Lemas auxiliares *)
 
lemma unicidad_limite_aux :
  assumes "limite u a"
          "limite u b"
  shows   "b ≤ a"
proof (rule ccontr)
  assume "¬ b ≤ a"
  let ?ε = "b - a"
  have "0 < ?ε/2"
    using ‹¬ b ≤ a› by auto
  obtain A where hA : "∀n≥A. ¦u n - a¦ < ?ε/2"
    using assms(1) limite_def ‹0 < ?ε/2by blast
  obtain B where hB : "∀n≥B. ¦u n - b¦ < ?ε/2"
    using assms(2) limite_def ‹0 < ?ε/2by blast
  let ?C = "max A B"
  have hCa : "∀n≥?C. ¦u n - a¦ < ?ε/2"
    using hA by simp
  have hCb : "∀n≥?C. ¦u n - b¦ < ?ε/2"
    using hB by simp
  have "∀n≥?C. ¦a - b¦ < ?ε"
  proof (intro allI impI)
    fix n assume "n ≥ ?C"
    have "¦a - b¦ = ¦(a - u n) + (u n - b)¦" by simp
    also have "… ≤ ¦u n - a¦ + ¦u n - b¦" by simp
    finally show "¦a - b¦ < b - a"
      using hCa hCb ‹n ≥ ?C› by fastforce
  qed
  then show False by fastforce
qed
 
lemma unicidad_limite :
  assumes "limite u a"
          "limite u b"
  shows   "a = b"
proof (rule antisym)
  show "a ≤ b" using assms(2) assms(1)
    by (rule unicidad_limite_aux)
next
  show "b ≤ a" using assms(1) assms(2)
    by (rule unicidad_limite_aux)
qed
 
lemma limite_subsucesion_aux :
  assumes "extraccion φ"
  shows   "n ≤ φ n"
proof (induct n)
  show "0 ≤ φ 0" by simp
next
  fix n assume HI : "n ≤ φ n"
  then show "Suc n ≤ φ (Suc n)"
    using assms extraccion_def
    by (metis Suc_leI lessI order_le_less_subst1)
qed
 
lemma limite_subsucesion :
  assumes "subsucesion v u"
          "limite u a"
  shows   "limite v a"
proof (unfold limite_def; intro allI impI)
  fix ε :: real
  assume "ε > 0"
  then obtain N where hN : "∀k≥N. ¦u k - a¦ < ε"
    using assms(2) limite_def by auto
  obtain φ where1 : "extraccion φ" and hφ2 : "v = u ∘ φ"
    using assms(1) subsucesion_def by auto
  have "∀k≥N. ¦v k - a¦ < ε"
  proof (intro allI impI)
    fix k
    assume "N ≤ k"
    also have "... ≤ φ k"
      by (simp add: limite_subsucesion_aux hφ1)
    finally have "N ≤ φ k" .
    have "¦v k - a¦ = ¦u (φ k) - a¦"
      using2 by simp
    also have "… < ε"
      using hN ‹N ≤ φ k› by simp
    finally show "¦v k - a¦ < ε" .
  qed
  then show "∃N. ∀k≥N. ¦v k - a¦ < ε"
    by auto
qed
 
(* Demostración *)
lemma
  assumes "convergente u"
          "punto_acumulacion u a"
  shows   "limite u a"
proof -
  obtain b where hb : "limite u b"
    using assms(1) convergente_def by auto
  obtain φ where1 : "extraccion φ" and
                 hφ2 : "limite (u ∘ φ) a"
    using assms(2) punto_acumulacion_def  by auto
  have "limite (u ∘ φ) b"
    using1 hb limite_subsucesion subsucesion_def by blast
  with2 have "a = b"
    by (rule unicidad_limite)
  then show "limite u a"
    using hb by simp
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

El conjunto de las clases de equivalencia es una partición

Demostrar que si R es una relación de equivalencia en X, entonces las clases de equivalencia de R es una partición de X.

Para ello, completar la siguiente teoría de Lean:

import tactic
 
variable  {X : Type}
variables {x y: X}
variable  {R : X  X  Prop}
 
def clase (R : X  X  Prop) (x : X) :=
  {y : X | R x y}
 
def particion (A : set (set X)) : Prop :=
  ( x, ( B ∈ A, x ∈ B   C ∈ A, x ∈ C  B = C))  ∅ ∉ A
 
example
  (h : equivalence R)
  : particion {a : set X |  s : X, a = clase R s} :=
sorry

[expand title=»Soluciones con Lean»]

import tactic
 
variable  {X : Type}
variables {x y: X}
variable  {R : X  X  Prop}
 
def clase (R : X  X  Prop) (x : X) :=
  {y : X | R x y}
 
def particion (A : set (set X)) : Prop :=
  ( x, ( B ∈ A, x ∈ B   C ∈ A, x ∈ C  B = C))  ∅ ∉ A
 
lemma aux
  (h : equivalence R)
  (hxy : R x y)
  : clase R y ⊆ clase R x :=
λ z hz, h.2.2 hxy hz
 
-- 1ª demostración
example
  (h : equivalence R)
  : particion {a : set X |  s : X, a = clase R s} :=
begin
  split,
  { simp,
    intro y,
    use (clase R y),
    split,
    { use y, },
    { split,
      { exact h.1 y, },
      { intros x hx,
        apply le_antisymm,
        { exact aux h hx, },
        { exact aux h (h.2.1 hx), }}}},
  { simp,
    intros x hx,
    have h1 : x ∈ clase R x := h.1 x,
    rw ← hx at h1,
    exact set.not_mem_empty x h1, },
end
 
-- 2ª demostración
example
  (h : equivalence R)
  : particion {a : set X |  s : X, a = clase R s} :=
begin
  split,
  { simp,
    intro y,
    use (clase R y),
    split,
    { use y, },
    { split,
      { exact h.1 y, },
      { intros x hx,
        exact le_antisymm (aux h hx) (aux h (h.2.1 hx)), }}},
  { simp,
    intros x hx,
    have h1 : x ∈ clase R x := h.1 x,
    rw ← hx at h1,
    exact set.not_mem_empty x h1, },
end
 
-- 3ª demostración
example
  (h : equivalence R)
  : particion {a : set X |  s : X, a = clase R s} :=
begin
  split,
  { simp,
    intro y,
    use [clase R y,
         ⟨by use y,
          ⟨h.1 y, λ x hx, le_antisymm (aux h hx) (aux h (h.2.1 hx))⟩⟩], },
  { simp,
    intros x hx,
    have h1 : x ∈ clase R x := h.1 x,
    rw ← hx at h1,
    exact set.not_mem_empty x h1, },
end

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory El_conjunto_de_las_clases_de_equivalencia_es_una_particion
imports Main
begin
 
definition clase :: "('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ 'a set"
  where "clase R x = {y. R x y}"
 
definition particion :: "('a set) set ⇒ bool" where
  "particion P ⟷ (∀x. (∃B∈P. x ∈ B ∧ (∀C∈P. x ∈ C ⟶ B = C))) ∧ {} ∉ P"
 
lemma
  fixes   R :: "'a ⇒ 'a ⇒ bool"
  assumes "equivp R"
  shows   "particion (⋃x. {clase R x})" (is "particion ?P")
proof (unfold particion_def; intro conjI)
  show "(∀x. ∃B∈?P. x ∈ B ∧ (∀C∈?P. x ∈ C ⟶ B = C))"
  proof (intro allI)
    fix x
    have "clase R x ∈ ?P"
      by auto
    moreover have "x ∈ clase R x"
      using assms clase_def equivp_def
      by (metis CollectI)
    moreover have "∀C∈?P. x ∈ C ⟶ clase R x = C"
    proof
      fix C
      assume "C ∈ ?P"
      then obtain y where "C = clase R y"
        by auto
      show "x ∈ C ⟶ clase R x = C"
      proof
        assume "x ∈ C"
        then have "R y x"
          using ‹C = clase R y› assms clase_def
          by (metis CollectD)
        then show "clase R x = C"
          using assms ‹C = clase R y› clase_def equivp_def
          by metis
      qed
    qed
    ultimately show "∃B∈?P. x ∈ B ∧ (∀C∈?P. x ∈ C ⟶ B = C)"
      by blast
  qed
next
  show "{} ∉ ?P"
  proof
    assume "{} ∈ ?P"
    then obtain x where "{} = clase R x"
      by auto
    moreover have "x ∈ clase R x"
      using assms clase_def equivp_def
      by (metis CollectI)
    ultimately show False
      by simp
  qed
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Las clases de equivalencia de elementos relacionados son iguales

Demostrar que las clases de equivalencia de elementos relacionados son iguales.

Para ello, completar la siguiente teoría de Lean:

import tactic
 
variable  {X : Type}
variables {x y: X}
variable  {R : X  X  Prop}
 
def clase (R : X  X  Prop) (x : X) :=
  {y : X | R x y}
 
example
  (h : equivalence R)
  (hxy : R x y)
  : clase R x = clase R y :=
sorry

[expand title=»Soluciones con Lean»]

import tactic
 
variable  {X : Type}
variables {x y: X}
variable  {R : X  X  Prop}
 
def clase (R : X  X  Prop) (x : X) :=
  {y : X | R x y}
 
-- En la demostración se usará el siguiente lema del que se presentan
-- varias demostraciones.
 
-- 1ª demostración del lema auxiliar
example
  (h : equivalence R)
  (hxy : R x y)
  : clase R y ⊆ clase R x :=
begin
  intros z hz,
  have hyz : R y z := hz,
  have htrans : transitive R := h.2.2,
  have hxz : R x z := htrans hxy hyz,
  exact hxz,
end
 
-- 2ª demostración del lema auxiliar
example
  (h : equivalence R)
  (hxy : R x y)
  : clase R y ⊆ clase R x :=
begin
  intros z hz,
  exact h.2.2 hxy hz,
end
 
-- 3ª demostración del lema auxiliar
lemma aux
  (h : equivalence R)
  (hxy : R x y)
  : clase R y ⊆ clase R x :=
λ z hz, h.2.2 hxy hz
 
-- A continuación se presentan varias demostraciones del ejercicio
-- usando el lema auxiliar
 
-- 1ª demostración
example
  (h : equivalence R)
  (hxy : R x y)
  : clase R x = clase R y :=
begin
  apply le_antisymm,
  { have hs : symmetric R := h.2.1,
    have hyx : R y x := hs hxy,
    exact aux h hyx, },
  { exact aux h hxy, },
end
 
-- 2ª demostración
example
  (h : equivalence R)
  (hxy : R x y)
  : clase R x = clase R y :=
begin
  apply le_antisymm,
  { exact aux h (h.2.1 hxy), },
  { exact aux h hxy, },
end
 
-- 3ª demostración
example
  (h : equivalence R)
  (hxy : R x y)
  : clase R x = clase R y :=
le_antisymm (aux h (h.2.1 hxy)) (aux h hxy)

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory Las_clases_de_equivalencia_de_elementos_relacionados_son_iguales
imports Main
begin
 
definition clase :: "('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ 'a set"
  where "clase R x = {y. R x y}"
 
(* En la demostración se usará el siguiente lema del que se presentan
   varias demostraciones. *)
 
(* 1ª demostración del lema auxiliar *)
lemma
  assumes "equivp R"
          "R x y"
  shows "clase R y ⊆ clase R x"
proof (rule subsetI)
  fix z
  assume "z ∈ clase R y"
  then have "R y z"
    by (simp add: clase_def)
  have "transp R"
    using assms(1) by (rule equivp_imp_transp)
  then have "R x z"
    using ‹R x y› ‹R y z› by (rule transpD)
  then show "z ∈ clase R x"
    by (simp add: clase_def)
qed
 
(* 2ª demostración del lema auxiliar *)
lemma aux :
  assumes "equivp R"
          "R x y"
  shows "clase R y ⊆ clase R x"
  using assms
  by (metis clase_def eq_refl equivp_def)
 
(* A continuación se presentan demostraciones del ejercicio *)
 
(* 1ª demostración *)
lemma
  assumes "equivp R"
          "R x y"
  shows "clase R y = clase R x"
proof (rule equalityI)
  show "clase R y ⊆ clase R x"
    using assms by (rule aux)
next
  show "clase R x ⊆ clase R y"
  proof -
    have "symp R"
      using assms(1) equivpE by blast
    have "R y x"
      using ‹R x y› by (simp add: ‹symp R› sympD)
    with assms(1) show "clase R x ⊆ clase R y"
       by (rule aux)
  qed
qed
 
(* 2ª demostración *)
lemma
  assumes "equivp R"
          "R x y"
  shows "clase R y = clase R x"
  using assms
  by (metis clase_def equivp_def)
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]