Menu Close

Etiqueta: IH.this

Pruebas de take n xs ++ drop n xs = xs

En Lean están definidas las funciones

   take : nat → list α → nat
   drop : nat → list α → nat
   (++) : list α → list α → list α

tales que

  • (take n xs) es la lista formada por los n primeros elementos de xs. Por ejemplo,
     take 2 [3,5,1,9,7] = [3,5]
  • (drop n xs) es la lista formada eliminando los n primeros elementos de xs. Por ejemplo,
     drop 2 [3,5,1,9,7] = [1,9,7]
  • (xs ++ ys) es la lista obtenida concatenando xs e ys. Por ejemplo.
     [3,5] ++ [1,9,7] = [3,5,1,9,7]

Dichas funciones están caracterizadas por los siguientes lemas:

   take_zero   : take 0 xs = []
   take_nil    : take n [] = []
   take_cons   : take (succ n) (x :: xs) = x :: take n xs
   drop_zero   : drop 0 xs = xs
   drop_nil    : drop n [] = []
   drop_cons   : drop (succ n) (x :: xs) = drop n xs := rfl
   nil_append  : [] ++ ys = ys
   cons_append : (x :: xs) ++ y = x :: (xs ++ ys)

Demostrar que

   take n xs ++ drop n xs = xs

Para ello, completar la siguiente teoría de Lean:

import data.list.basic
import tactic
open list nat
 
variable {α : Type}
variable (x : α)
variable (xs : list α)
variable (n : )
 
lemma drop_zero : drop 0 xs = xs := rfl
lemma drop_cons : drop (succ n) (x :: xs) = drop n xs := rfl
 
example :
  take n xs ++ drop n xs = xs :=
sorry

[expand title=»Soluciones con Lean»]

import data.list.basic
import tactic
open list
open nat
 
variable {α : Type}
variable (n : )
variable (x : α)
variable (xs : list α)
 
lemma drop_zero : drop 0 xs = xs := rfl
lemma drop_cons : drop (succ n) (x :: xs) = drop n xs := rfl
 
-- 1ª demostración
example :
  take n xs ++ drop n xs = xs :=
begin
  induction n with m HI1 generalizing xs,
  { rw take_zero,
    rw drop_zero,
    rw nil_append, },
  { induction xs with a as HI2,
    { rw take_nil,
      rw drop_nil,
      rw nil_append, },
    { rw take_cons,
      rw drop_cons,
      rw cons_append,
      rw (HI1 as), }, },
end
 
-- 2ª demostración
example :
  take n xs ++ drop n xs = xs :=
begin
  induction n with m HI1 generalizing xs,
  { calc take 0 xs ++ drop 0 xs
         = [] ++ drop 0 xs        : by rw take_zero
     ... = [] ++ xs               : by rw drop_zero
     ... = xs                     : by rw nil_append, },
  { induction xs with a as HI2,
    { calc take (succ m) [] ++ drop (succ m) []
           = ([] : list α) ++ drop (succ m) [] : by rw take_nil
       ... = [] ++ []                          : by rw drop_nil
       ... = []                                : by rw nil_append, },
    { calc take (succ m) (a :: as) ++ drop (succ m) (a :: as)
           = (a :: take m as) ++ drop (succ m) (a :: as) : by rw take_cons
       ... = (a :: take m as) ++ drop m as               : by rw drop_cons
       ... = a :: (take m as ++ drop m as)               : by rw cons_append
       ... = a :: as                                     : by rw (HI1 as), }, },
end
 
-- 3ª demostración
example :
  take n xs ++ drop n xs = xs :=
begin
  induction n with m HI1 generalizing xs,
  { simp, },
  { induction xs with a as HI2,
    { simp, },
    { simp [HI1 as], }, },
end
 
-- 4ª demostración
lemma conc_take_drop_1 :
   (n : ) (xs : list α), take n xs ++ drop n xs = xs
| 0 xs := by calc
    take 0 xs ++ drop 0 xs
        = [] ++ drop 0 xs   : by rw take_zero
    ... = [] ++ xs          : by rw drop_zero
    ... = xs                : by rw nil_append
| (succ m) [] := by calc
    take (succ m) [] ++ drop (succ m) []
        = ([] : list α) ++ drop (succ m) [] : by rw take_nil
    ... = [] ++ []                          : by rw drop_nil
    ... = []                                : by rw nil_append
| (succ m) (a :: as) := by calc
    take (succ m) (a :: as) ++ drop (succ m) (a :: as)
        = (a :: take m as) ++ drop (succ m) (a :: as)    : by rw take_cons
    ... = (a :: take m as) ++ drop m as                  : by rw drop_cons
    ... = a :: (take m as ++ drop m as)                  : by rw cons_append
    ... = a :: as                                        : by rw conc_take_drop_1
 
-- 5ª demostración
lemma conc_take_drop_2 :
   (n : ) (xs : list α), take n xs ++ drop n xs = xs
| 0        xs        := by simp
| (succ m) []        := by simp
| (succ m) (a :: as) := by simp [conc_take_drop_2]
 
-- 6ª demostración
lemma conc_take_drop_3 :
   (n : ) (xs : list α), take n xs ++ drop n xs = xs
| 0        xs        := rfl
| (succ m) []        := rfl
| (succ m) (a :: as) := congr_arg (cons a) (conc_take_drop_3 m as)
 
-- 7ª demostración
example : take n xs ++ drop n xs = xs :=
-- by library_search
take_append_drop n xs
 
-- 8ª demostración
example : take n xs ++ drop n xs = xs :=
by simp

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory "Pruebas_de_take_n_xs_++_drop_n_xs_Ig_xs"
imports Main
begin
 
fun take' :: "nat ⇒ 'a list ⇒ 'a list" where
  "take' n []           = []"
| "take' 0 xs           = []"
| "take' (Suc n) (x#xs) = x # (take' n xs)"
 
fun drop' :: "nat ⇒ 'a list ⇒ 'a list" where
  "drop' n []           = []"
| "drop' 0 xs           = xs"
| "drop' (Suc n) (x#xs) = drop' n xs"
 
(* 1ª demostración *)
lemma "take' n xs @ drop' n xs = xs"
proof (induct rule: take'.induct)
  fix n
  have "take' n [] @ drop' n [] = [] @ drop' n []"
    by (simp only: take'.simps(1))
  also have "… = drop' n []"
    by (simp only: append.simps(1))
  also have "… = []"
    by (simp only: drop'.simps(1))
  finally show "take' n [] @ drop' n [] = []"
    by this
next
  fix x :: 'a and xs :: "'a list"
  have "take' 0 (x#xs) @ drop' 0 (x#xs) =
        [] @ drop' 0 (x#xs)"
    by (simp only: take'.simps(2))
  also have "… = drop' 0 (x#xs)"
    by  (simp only: append.simps(1))
  also have "… = x # xs"
    by  (simp only: drop'.simps(2))
  finally show "take' 0 (x#xs) @ drop' 0 (x#xs) = x#xs"
    by this
next
  fix n :: nat and x :: 'a and xs :: "'a list"
  assume HI: "take' n xs @ drop' n xs = xs"
  have "take' (Suc n) (x # xs) @ drop' (Suc n) (x # xs) =
        (x # (take' n xs)) @ drop' n xs"
    by (simp only: take'.simps(3)
                   drop'.simps(3))
  also have "… = x # (take' n xs @ drop' n xs)"
    by (simp only: append.simps(2))
  also have "… = x#xs"
    by (simp only: HI)
  finally show "take' (Suc n) (x#xs) @ drop' (Suc n) (x#xs) =
                x#xs"
    by this
qed
 
(* 2ª demostración *)
lemma "take' n xs @ drop' n xs = xs"
proof (induct rule: take'.induct)
case (1 n)
  then show ?case by simp
next
  case (2 x xs)
  then show ?case by simp
next
  case (3 n x xs)
  then show ?case by simp
qed
 
(* 3ª demostración *)
lemma "take' n xs @ drop' n xs = xs"
by (induct rule: take'.induct) simp_all
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Pruebas de length (xs ++ ys) = length xs + length ys

En Lean están definidas las funciones

   length : list α → nat
   (++)   : list α → list α → list α

tales que

  • (length xs) es la longitud de xs. Por ejemplo,
     length [2,3,5,3] = 4
  • (xs ++ ys) es la lista obtenida concatenando xs e ys. Por ejemplo.
     [1,2] ++ [2,3,5,3] = [1,2,2,3,5,3]

Dichas funciones están caracterizadas por los siguientes lemas:

   length_nil  : length [] = 0
   length_cons : length (x :: xs) = length xs + 1
   nil_append  : [] ++ ys = ys
   cons_append : (x :: xs) ++ y = x :: (xs ++ ys)

Demostrar que

   length (xs ++ ys) = length xs + length ys

Para ello, completar la siguiente teoría de Lean:

import tactic
open list
 
variable  {α : Type}
variable  (x : α)
variables (xs ys zs : list α)
 
lemma length_nil  : length ([] : list α) = 0 := rfl
 
example :
  length (xs ++ ys) = length xs + length ys :=
sorry

[expand title=»Soluciones con Lean»]

import tactic
open list
 
variable  {α : Type}
variable  (x : α)
variables (xs ys zs : list α)
 
lemma length_nil  : length ([] : list α) = 0 := rfl
 
-- 1ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { rw nil_append,
    rw length_nil,
    rw zero_add, },
  { rw cons_append,
    rw length_cons,
    rw HI,
    rw length_cons,
    rw add_assoc,
    rw add_comm (length ys),
    rw add_assoc, },
end
 
-- 2ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { rw nil_append,
    rw length_nil,
    rw zero_add, },
  { rw cons_append,
    rw length_cons,
    rw HI,
    rw length_cons,
    -- library_search,
    exact add_right_comm (length as) (length ys) 1 },
end
 
-- 3ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { rw nil_append,
    rw length_nil,
    rw zero_add, },
  { rw cons_append,
    rw length_cons,
    rw HI,
    rw length_cons,
    -- by hint,
    linarith, },
end
 
-- 4ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { simp, },
  { simp [HI],
    linarith, },
end
 
-- 5ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { simp, },
  { finish [HI],},
end
 
-- 6ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
by induction xs ; finish [*]
 
-- 7ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { calc length ([] ++ ys)
         = length ys                    : congr_arg length (nil_append ys)
     ... = 0 + length ys                : (zero_add (length ys)).symm
     ... = length [] + length ys        : congr_arg2 (+) length_nil.symm rfl, },
  { calc length ((a :: as) ++ ys)
         = length (a :: (as ++ ys))     : congr_arg length (cons_append a as ys)
     ... = length (as ++ ys) + 1        : length_cons a (as ++ ys)
     ... = (length as + length ys) + 1  : congr_arg2 (+) HI rfl
     ... = (length as + 1) + length ys  : add_right_comm (length as) (length ys) 1
     ... = length (a :: as) + length ys : congr_arg2 (+) (length_cons a as).symm rfl, },
end
 
-- 8ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
begin
  induction xs with a as HI,
  { calc length ([] ++ ys)
         = length ys                    : by rw nil_append
     ... = 0 + length ys                : (zero_add (length ys)).symm
     ... = length [] + length ys        : by rw length_nil },
  { calc length ((a :: as) ++ ys)
         = length (a :: (as ++ ys))     : by rw cons_append
     ... = length (as ++ ys) + 1        : by rw length_cons
     ... = (length as + length ys) + 1  : by rw HI
     ... = (length as + 1) + length ys  : add_right_comm (length as) (length ys) 1
     ... = length (a :: as) + length ys : by rw length_cons, },
end
 
-- 9ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
list.rec_on xs
  ( show length ([] ++ ys) = length [] + length ys, from
      calc length ([] ++ ys)
           = length ys                    : by rw nil_append
       ... = 0 + length ys                : by exact (zero_add (length ys)).symm
       ... = length [] + length ys        : by rw length_nil )
  ( assume a as,
    assume HI : length (as ++ ys) = length as + length ys,
    show length ((a :: as) ++ ys) = length (a :: as) + length ys, from
      calc length ((a :: as) ++ ys)
           = length (a :: (as ++ ys))     : by rw cons_append
       ... = length (as ++ ys) + 1        : by rw length_cons
       ... = (length as + length ys) + 1  : by rw HI
       ... = (length as + 1) + length ys  : by exact add_right_comm (length as) (length ys) 1
       ... = length (a :: as) + length ys : by rw length_cons)
 
-- 10ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
list.rec_on xs
  ( by simp)
  ( λ a as HI, by simp [HI, add_right_comm])
 
-- 11ª demostración
lemma longitud_conc_1 :
   xs, length (xs ++ ys) = length xs + length ys
| [] := by calc
    length ([] ++ ys)
        = length ys                    : by rw nil_append
    ... = 0 + length ys                : by rw zero_add
    ... = length [] + length ys        : by rw length_nil
| (a :: as) := by calc
    length ((a :: as) ++ ys)
        = length (a :: (as ++ ys))     : by rw cons_append
    ... = length (as ++ ys) + 1        : by rw length_cons
    ... = (length as + length ys) + 1  : by rw longitud_conc_1
    ... = (length as + 1) + length ys  : by exact add_right_comm (length as) (length ys) 1
    ... = length (a :: as) + length ys : by rw length_cons
 
-- 12ª demostración
lemma longitud_conc_2 :
   xs, length (xs ++ ys) = length xs + length ys
| []        := by simp
| (a :: as) := by simp [longitud_conc_2 as, add_right_comm]
 
-- 13ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
-- by library_search
length_append xs ys
 
-- 14ª demostración
example :
  length (xs ++ ys) = length xs + length ys :=
by simp

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory "Pruebas_de_length(xs_++_ys)_Ig_length_xs+length_ys"
imports Main
begin
 
(* 1ª demostración *)
lemma "length (xs @ ys) = length xs + length ys"
proof (induct xs)
  have "length ([] @ ys) = length ys"
    by (simp only: append_Nil)
  also have "… = 0 + length ys"
    by (rule add_0 [symmetric])
  also have "… = length [] + length ys"
    by (simp only: list.size(3))
  finally show "length ([] @ ys) = length [] + length ys"
    by this
next
  fix x xs
  assume HI : "length (xs @ ys) = length xs + length ys"
  have "length ((x # xs) @ ys) =
        length (x # (xs @ ys))"
    by (simp only: append_Cons)
  also have "… = length (xs @ ys) + 1"
    by (simp only: list.size(4))
  also have "… = (length xs + length ys) + 1"
    by (simp only: HI)
  also have "… = (length xs + 1) + length ys"
    by (simp only: add.assoc add.commute)
  also have "… = length (x # xs) + length ys"
    by (simp only: list.size(4))
  then show "length ((x # xs) @ ys) = length (x # xs) + length ys"
    by simp
qed
 
(* 2ª demostración *)
lemma "length (xs @ ys) = length xs + length ys"
proof (induct xs)
  show "length ([] @ ys) = length [] + length ys"
    by simp
next
  fix x xs
  assume "length (xs @ ys) = length xs + length ys"
  then show "length ((x # xs) @ ys) = length (x # xs) + length ys"
    by simp
qed
 
(* 3ª demostración *)
lemma "length (xs @ ys) = length xs + length ys"
proof (induct xs)
  case Nil
  then show ?case by simp
next
  case (Cons a xs)
  then show ?case by simp
qed
 
(* 4ª demostración *)
lemma "length (xs @ ys) = length xs + length ys"
by (induct xs) simp_all
 
(* 5ª demostración *)
lemma "length (xs @ ys) = length xs + length ys"
by (fact length_append)
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Pruebas de length (repeat x n) = n

En Lean están definidas las funciones length y repeat tales que

  • (length xs) es la longitud de la lista xs. Por ejemplo,
     length [1,2,5,2] = 4
  • (repeat x n) es la lista que tiene el elemento x n veces. Por ejemplo,
     repeat 7 3 = [7, 7, 7]

Demostrar que

   length (repeat x n) = n

Para ello, completar la siguiente teoría de Lean:

import data.list.basic
open nat
open list
 
variable {α : Type}
variable (x : α)
variable (n : )
 
example :
  length (repeat x n) = n :=
sorry

[expand title=»Soluciones con Lean»]

import data.list.basic
open nat
open list
 
set_option pp.structure_projections false
 
variable {α : Type}
variable (x : α)
variable (n : )
 
-- 1ª demostración
example :
  length (repeat x n) = n :=
begin
  induction n with n HI,
  { calc length (repeat x 0)
          = length []                : congr_arg length (repeat.equations._eqn_1 x)
      ... = 0                        : length.equations._eqn_1 },
  { calc length (repeat x (succ n))
         = length (x :: repeat x n)  : congr_arg length (repeat.equations._eqn_2 x n)
     ... = length (repeat x n) + 1   : length.equations._eqn_2 x (repeat x n)
     ... = n + 1                     : congr_arg2 (+) HI rfl
     ... = succ n                    : rfl, },
end
 
-- 2ª demostración
example :
  length (repeat x n) = n :=
begin
  induction n with n HI,
  { calc length (repeat x 0)
          = length []                : rfl
      ... = 0                        : rfl },
  { calc length (repeat x (succ n))
         = length (x :: repeat x n)  : rfl
     ... = length (repeat x n) + 1   : rfl
     ... = n + 1                     : by rw HI
     ... = succ n                    : rfl, },
end
 
-- 3ª demostración
example : length (repeat x n) = n :=
begin
  induction n with n HI,
  { refl, },
  { dsimp,
    rw HI, },
end
 
-- 4ª demostración
example : length (repeat x n) = n :=
begin
  induction n with n HI,
  { simp, },
  { simp [HI], },
end
 
-- 5ª demostración
example : length (repeat x n) = n :=
by induction n ; simp [*]
 
-- 6ª demostración
example : length (repeat x n) = n :=
nat.rec_on n
  ( show length (repeat x 0) = 0, from
      calc length (repeat x 0)
           = length []                : rfl
       ... = 0                        : rfl )
  ( assume n,
    assume HI : length (repeat x n) = n,
    show length (repeat x (succ n)) = succ n, from
      calc length (repeat x (succ n))
           = length (x :: repeat x n) : rfl
       ... = length (repeat x n) + 1  : rfl
       ... = n + 1                    : by rw HI
       ... = succ n                   : rfl )
 
-- 7ª demostración
example : length (repeat x n) = n :=
nat.rec_on n
  ( by simp )
  ( λ n HI, by simp [HI])
 
-- 8ª demostración
example : length (repeat x n) = n :=
length_repeat x n
 
-- 9ª demostración
example : length (repeat x n) = n :=
by simp
 
-- 10ª demostración
lemma length_repeat_1 :
   n, length (repeat x n) = n
| 0 := by calc length (repeat x 0)
               = length ([] : list α)         : rfl
           ... = 0                            : rfl
| (n+1) := by calc length (repeat x (n + 1))
                   = length (x :: repeat x n) : rfl
               ... = length (repeat x n) + 1  : rfl
               ... = n + 1                    : by rw length_repeat_1
 
-- 11ª demostración
lemma length_repeat_2 :
   n, length (repeat x n) = n
| 0     := by simp
| (n+1) := by simp [*]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory "Pruebas_de_length_(repeat_x_n)_Ig_n"
imports Main
begin
 
(* 1ª demostración⁾*)
lemma "length (replicate n x) = n"
proof (induct n)
  have "length (replicate 0 x) = length ([] :: 'a list)"
    by (simp only: replicate.simps(1))
  also have "… = 0"
    by (rule list.size(3))
  finally show "length (replicate 0 x) = 0"
    by this
next
  fix n
  assume HI : "length (replicate n x) = n"
  have "length (replicate (Suc n) x) =
        length (x # replicate n x)"
    by (simp only: replicate.simps(2))
  also have "… = length (replicate n x) + 1"
    by (simp only: list.size(4))
  also have "… = Suc n"
    by (simp only: HI)
  finally show "length (replicate (Suc n) x) = Suc n"
    by this
qed
 
(* 2ª demostración⁾*)
lemma "length (replicate n x) = n"
proof (induct n)
  show "length (replicate 0 x) = 0"
    by simp
next
  fix n
  assume "length (replicate n x) = n"
  then show "length (replicate (Suc n) x) = Suc n"
    by simp
qed
 
(* 3ª demostración⁾*)
lemma "length (replicate n x) = n"
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n)
  then show ?case by simp
qed
 
(* 4ª demostración⁾*)
lemma "length (replicate n x) = n"
  by (rule length_replicate)
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Las funciones de extracción no están acotadas

Para extraer una subsucesión se aplica una función de extracción que conserva el orden; por ejemplo, la subsucesión

   uₒ, u₂, u₄, u₆, ...

se ha obtenido con la función de extracción φ tal que φ(n) = 2*n.

En Lean, se puede definir que φ es una función de extracción por

   def extraccion (φ : ℕ → ℕ) :=
     ∀ n m, n < m → φ n < φ m

Demostrar que las funciones de extracción no está acotadas; es decir, que si φ es una función de extracción, entonces

    ∀ N N', ∃ n ≥ N', φ n ≥ N

Para ello, completar la siguiente teoría de Lean:

import tactic
open nat
 
variable {φ :   }
 
def extraccion (φ :   ) :=
   n m, n < m  φ n < φ m
 
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
sorry

[expand title=»Soluciones con Lean»]

import tactic
open nat
 
variable {φ :   }
 
def extraccion (φ :   ) :=
   n m, n < m  φ n < φ m
 
lemma aux
  (h : extraccion φ)
  :  n, n  φ n :=
begin
  intro n,
  induction n with m HI,
  { exact nat.zero_le (φ 0), },
  { apply nat.succ_le_of_lt,
    calc m  φ m        : HI
       ... < φ (succ m) : h m (m+1) (lt_add_one m), },
end
 
-- 1ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
begin
  intros N N',
  let n := max N N',
  use n,
  split,
  { exact le_max_right N N', },
  { calc N  n   : le_max_left N N'
       ...  φ n : aux h n, },
end
 
-- 2ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
begin
  intros N N',
  let n := max N N',
  use n,
  split,
  { exact le_max_right N N', },
  { exact le_trans (le_max_left N N')
                   (aux h n), },
end
 
-- 3ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
begin
  intros N N',
  use max N N',
  split,
  { exact le_max_right N N', },
  { exact le_trans (le_max_left N N')
                   (aux h (max N N')), },
end
 
-- 4ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
begin
  intros N N',
  use max N N',
  exact ⟨le_max_right N N',
         le_trans (le_max_left N N')
                  (aux h (max N N'))⟩,
end
 
-- 5ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
λ N N',
  ⟨max N N', ⟨le_max_right N N',
              le_trans (le_max_left N N')
                       (aux h (max N N'))⟩⟩
 
-- 6ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
assume N N',
let n := max N N' in
have h1 : n  N',
  from le_max_right N N',
show  n  N', φ n  N, from
exists.intro n
  (exists.intro h1
    (show φ n  N, from
       calc N  n   : le_max_left N N'
          ...  φ n : aux h n))
 
-- 7ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
assume N N',
let n := max N N' in
have h1 : n  N',
  from le_max_right N N',
show  n  N', φ n  N, from
⟨n, h1, calc N  n   : le_max_left N N'
          ...   φ n : aux h n⟩
 
-- 8ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
assume N N',
let n := max N N' in
have h1 : n  N',
  from le_max_right N N',
show  n  N', φ n  N, from
⟨n, h1, le_trans (le_max_left N N')
                 (aux h (max N N'))⟩
 
-- 9ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
assume N N',
let n := max N N' in
have h1 : n  N',
  from le_max_right N N',
⟨n, h1, le_trans (le_max_left N N')
                 (aux h n)⟩
 
-- 10ª demostración
example
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
assume N N',
⟨max N N', le_max_right N N',
           le_trans (le_max_left N N')
                    (aux h (max N N'))⟩
 
-- 11ª demostración
lemma extraccion_mye
  (h : extraccion φ)
  :  N N',  n  N', φ n  N :=
λ N N',
  ⟨max N N', le_max_right N N',
             le_trans (le_max_left N N')
             (aux h (max N N'))

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory Las_funciones_de_extraccion_no_estan_acotadas
imports Main
begin
 
definition extraccion :: "(nat ⇒ nat) ⇒ bool" where
  "extraccion φ ⟷ (∀ n m. n < m ⟶ φ n < φ m)"
 
(* En la demostración se usará el siguiente lema *)
lemma aux :
  assumes "extraccion φ"
  shows   "n ≤ φ n"
proof (induct n)
  show "0 ≤ φ 0"
    by simp
next
  fix n
  assume HI : "n ≤ φ n"
  also have "φ n < φ (Suc n)"
    using assms extraccion_def by blast
  finally show "Suc n ≤ φ (Suc n)"
    by simp
qed
 
(* 1ª demostración *)
lemma
  assumes "extraccion φ"
  shows   "∀ N N'. ∃ k ≥ N'. φ k ≥ N"
proof (intro allI)
  fix N N' :: nat
  let ?k = "max N N'"
  have "max N N' ≤ ?k"
    by (rule le_refl)
  then have hk : "N ≤ ?k ∧ N' ≤ ?k"
    by (simp only: max.bounded_iff)
  then have "?k ≥ N'"
    by (rule conjunct2)
  moreover
  have "N ≤ φ ?k"
  proof -
    have "N ≤ ?k"
      using hk by (rule conjunct1)
    also have "… ≤ φ ?k"
      using assms by (rule aux)
    finally show "N ≤ φ ?k"
      by this
  qed
  ultimately have "?k ≥ N' ∧ φ ?k ≥ N"
    by (rule conjI)
  then show "∃k ≥ N'. φ k ≥ N"
    by (rule exI)
qed
 
(* 2ª demostración *)
lemma
  assumes "extraccion φ"
  shows   "∀ N N'. ∃ k ≥ N'. φ k ≥ N"
proof (intro allI)
  fix N N' :: nat
  let ?k = "max N N'"
  have "?k ≥ N'"
    by simp
  moreover
  have "N ≤ φ ?k"
  proof -
    have "N ≤ ?k"
      by simp
    also have "… ≤ φ ?k"
      using assms by (rule aux)
    finally show "N ≤ φ ?k"
      by this
  qed
  ultimately show "∃k ≥ N'. φ k ≥ N"
    by blast
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Las sucesiones convergentes son sucesiones de Cauchy

Nota: El problema de hoy lo ha escrito Sara Díaz Real y es uno de los que se encuentran en su Trabajo Fin de Máster Formalización en Lean de problemas de las Olimpiadas Internacionales de Matemáticas (IMO). Concretamente, el problema se encuentra en la página 52 junto con la demostración en lenguaje natural.


En Lean, una sucesión u₀, u₁, u₂, … se puede representar mediante una función (u : ℕ → ℝ) de forma que u(n) es uₙ.

Se define

  • el valor absoluto de x por
     notation `|`x`|` := abs x
  • a es un límite de la sucesión u, por
     def limite (u : ℕ → ℝ) (a : ℝ) :=
       ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - a| ≤ ε
  • la sucesión u es convergente por
     def suc_convergente (u : ℕ → ℝ) :=
       ∃ l, limite u l
  • la sucesión u es de Cauchy por
     def suc_cauchy (u : ℕ → ℝ) :=
       ∀ ε > 0, ∃ N, ∀ p ≥ N, ∀ q ≥ N, |u p - u q| ≤ ε

Demostrar que las sucesiones convergentes son de Cauchy.

Para ello, completar la siguiente teoría de Lean:

import data.real.basic
 
variable {u :    }
 
notation `|`x`|` := abs x
 
def limite (u :   ) (l : ) : Prop :=
   ε > 0,  N,  n  N, |u n - l|  ε
 
def suc_convergente (u :   ) :=
   l, limite u l
 
def suc_cauchy (u :   ) :=
   ε > 0,  N,  p  N,  q  N, |u p - u q|  ε
 
example
  (h : suc_convergente u)
  : suc_cauchy u :=
sorry

[expand title=»Soluciones con Lean»]

import data.real.basic
 
variable {u :    }
 
notation `|`x`|` := abs x
 
def limite (u :   ) (l : ) : Prop :=
   ε > 0,  N,  n  N, |u n - l|  ε
 
def suc_convergente (u :   ) :=
   l, limite u l
 
def suc_cauchy (u :   ) :=
   ε > 0,  N,  p  N,  q  N, |u p - u q|  ε
 
-- 1ª demostración
example
  (h : suc_convergente u)
  : suc_cauchy u :=
begin
  unfold suc_cauchy,
  intros ε hε,
  have2 : 0 < ε/2 := half_pos hε,
  cases h with l hl,
  cases hl (ε/2)2 with N hN,
  clear hε hl hε2,
  use N,
  intros p hp q hq,
  calc |u p - u q|
       = |(u p - l) + (l - u q)| : by ring_nf
   ...  |u p - l|  + |l - u q|  : abs_add (u p - l) (l - u q)
   ... = |u p - l|  + |u q - l|  : congr_arg2 (+) rfl (abs_sub_comm l (u q))
   ...  ε/2 + ε/2               : add_le_add (hN p hp) (hN q hq)
   ... = ε                       : add_halves ε,
end
 
-- 2ª demostración
example
  (h : suc_convergente u)
  : suc_cauchy u :=
begin
  intros ε hε,
  cases h with l hl,
  cases hl (ε/2) (half_pos hε) with N hN,
  clear hε hl,
  use N,
  intros p hp q hq,
  calc |u p - u q|
       = |(u p - l) + (l - u q)| : by ring_nf
   ...  |u p - l|  + |l - u q|  : abs_add (u p - l) (l - u q)
   ... = |u p - l|  + |u q - l|  : congr_arg2 (+) rfl (abs_sub_comm l (u q))
   ...  ε/2 + ε/2               : add_le_add (hN p hp) (hN q hq)
   ... = ε                       : add_halves ε,
end
 
-- 3ª demostración
example
  (h : suc_convergente u)
  : suc_cauchy u :=
begin
  intros ε hε,
  cases h with l hl,
  cases hl (ε/2) (half_pos hε) with N hN,
  clear hε hl,
  use N,
  intros p hp q hq,
  have cota1 : |u p - l|  ε / 2 := hN p hp,
  have cota2 : |u q - l|  ε / 2 := hN q hq,
  clear hN hp hq,
  calc |u p - u q|
       = |(u p - l) + (l - u q)| : by ring_nf
   ...  |u p - l|  + |l - u q|  : abs_add (u p - l) (l - u q)
   ... = |u p - l|  + |u q - l|  : by rw abs_sub_comm l (u q)
   ...  ε                       : by linarith,
end
 
-- 4ª demostración
example
  (h : suc_convergente u)
  : suc_cauchy u :=
begin
  intros ε hε,
  cases h with l hl,
  cases hl (ε/2) (half_pos hε) with N hN,
  clear hε hl,
  use N,
  intros p hp q hq,
  calc |u p - u q|
       = |(u p - l) + (l - u q)| : by ring_nf
   ...  |u p - l|  + |l - u q|  : abs_add (u p - l) (l - u q)
   ... = |u p - l|  + |u q - l|  : by rw abs_sub_comm l (u q)
   ...  ε                       : by linarith [hN p hp, hN q hq],
end
 
-- 5ª demostración
example
  (h : suc_convergente u)
  : suc_cauchy u :=
begin
  intros ε hε,
  cases h with l hl,
  cases hl (ε/2) (by linarith) with N hN,
  use N,
  intros p hp q hq,
  calc |u p - u q|
       = |(u p - l) + (l - u q)| : by ring_nf
   ...  |u p - l|  + |l - u q|  : by simp [abs_add]
   ... = |u p - l|  + |u q - l|  : by simp [abs_sub_comm]
   ...  ε                       : by linarith [hN p hp, hN q hq],
end

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory Las_sucesiones_convergentes_son_sucesiones_de_Cauchy
imports Main HOL.Real
begin
 
definition limite :: "(nat ⇒ real) ⇒ real ⇒ bool"
  where "limite u c ⟷ (∀ε>0. ∃k::nat. ∀n≥k. ¦u n - c¦ < ε)"
 
definition suc_convergente :: "(nat ⇒ real) ⇒ bool"
  where "suc_convergente u ⟷ (∃ l. limite u l)"
 
definition suc_cauchy :: "(nat ⇒ real) ⇒ bool"
  where "suc_cauchy u ⟷ (∀ε>0. ∃k. ∀m≥k. ∀n≥k. ¦u m - u n¦ < ε)"
 
(* 1ª demostración *)
lemma
  assumes "suc_convergente u"
  shows   "suc_cauchy u"
proof (unfold suc_cauchy_def; intro allI impI)
  fix ε :: real
  assume "0 < ε"
  then have "0 < ε/2"
    by simp
  obtain a where "limite u a"
    using assms suc_convergente_def by blast
  then obtain k where hk : "∀n≥k. ¦u n - a¦ < ε/2"
    using0 < ε / 2› limite_def by blast
  have "∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
  proof (intro allI impI)
    fix p q
    assume hp : "p ≥ k" and hq : "q ≥ k"
    then have hp' : "¦u p - a¦ < ε/2"
      using hk by blast
    have hq' : "¦u q - a¦ < ε/2"
      using hk hq by blast
    have "¦u p - u q¦ = ¦(u p - a) + (a - u q)¦"
      by simp
    also have "… ≤ ¦u p - a¦  + ¦a - u q¦"
      by simp
    also have "… = ¦u p - a¦  + ¦u q - a¦"
      by simp
    also have "… < ε/2 + ε/2"
      using hp' hq' by simp
    also have "… = ε"
      by simp
    finally show "¦u p - u q¦ < ε"
      by this
  qed
  then show "∃k. ∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
    by (rule exI)
qed
 
(* 2ª demostración *)
lemma
  assumes "suc_convergente u"
  shows   "suc_cauchy u"
proof (unfold suc_cauchy_def; intro allI impI)
  fix ε :: real
  assume "0 < ε"
  then have "0 < ε/2"
    by simp
  obtain a where "limite u a"
    using assms suc_convergente_def by blast
  then obtain k where hk : "∀n≥k. ¦u n - a¦ < ε/2"
    using0 < ε / 2› limite_def by blast
  have "∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
  proof (intro allI impI)
    fix p q
    assume hp : "p ≥ k" and hq : "q ≥ k"
    then have hp' : "¦u p - a¦ < ε/2"
      using hk by blast
    have hq' : "¦u q - a¦ < ε/2"
      using hk hq by blast
    show "¦u p - u q¦ < ε"
      using hp' hq' by argo
  qed
  then show "∃k. ∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
    by (rule exI)
qed
 
(* 3ª demostración *)
lemma
  assumes "suc_convergente u"
  shows   "suc_cauchy u"
proof (unfold suc_cauchy_def; intro allI impI)
  fix ε :: real
  assume "0 < ε"
  then have "0 < ε/2"
    by simp
  obtain a where "limite u a"
    using assms suc_convergente_def by blast
  then obtain k where hk : "∀n≥k. ¦u n - a¦ < ε/2"
    using0 < ε / 2› limite_def by blast
  have "∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
    using hk by (smt (z3) field_sum_of_halves)
  then show "∃k. ∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
    by (rule exI)
qed
 
(* 3ª demostración *)
lemma
  assumes "suc_convergente u"
  shows   "suc_cauchy u"
proof (unfold suc_cauchy_def; intro allI impI)
  fix ε :: real
  assume "0 < ε"
  then have "0 < ε/2"
    by simp
  obtain a where "limite u a"
    using assms suc_convergente_def by blast
  then obtain k where hk : "∀n≥k. ¦u n - a¦ < ε/2"
    using0 < ε / 2› limite_def by blast
  then show "∃k. ∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
    by (smt (z3) field_sum_of_halves)
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]