Menu Close

Etiqueta: IH.notI

Las sucesiones divergentes positivas no tienen límites finitos

En Lean, una sucesión u₀, u₁, u₂, … se puede representar mediante una función (u : ℕ → ℝ) de forma que u(n) es uₙ.

Se define que a es el límite de la sucesión u, por

   def limite (u: ℕ → ℝ) (a: ℝ) :=
     ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - a| < ε

donde se usa la notación |x| para el valor absoluto de x

   notation `|`x`|` := abs x

La sucesión u diverge positivamente cuando, para cada número real A, se puede encontrar un número natural m tal que, para n > m , se tenga u(n) > A. En Lean se puede definir por

   def diverge_positivamente (u : ℕ → ℝ) :=
     ∀ A, ∃ m, ∀ n ≥ m, u n > A

Demostrar que si u diverge positivamente, entonces ningún número real es límite de u.

Para ello, completar la siguiente teoría de Lean:

import data.real.basic
import tactic
 
variable  {u :   }
 
notation `|`x`|` := abs x
 
def limite (u :   ) (a : ) :=
   ε > 0,  m,  n  m, |u n - a| < ε
 
def diverge_positivamente (u :   ) :=
   A,  m,  n  m, u n > A
 
example
  (h : diverge_positivamente u)
  : ¬( a, limite u a) :=
sorry

[expand title=»Soluciones con Lean»]

import data.real.basic
import tactic
 
variable  {u :   }
 
notation `|`x`|` := abs x
 
def limite (u :   ) (a : ) :=
   ε > 0,  m,  n  m, |u n - a| < ε
 
def diverge_positivamente (u :   ) :=
   A,  m,  n  m, u n > A
 
-- 1ª demostración
example
  (h : diverge_positivamente u)
  : ¬( a, limite u a) :=
begin
  push_neg,
  intros a ha,
  cases ha 1 zero_lt_one with m1 hm1,
  cases h (a+1) with m2 hm2,
  let m := max m1 m2,
  specialize hm1 m (le_max_left _ _),
  specialize hm2 m (le_max_right _ _),
  replace hm1 : u m - a < 1 := lt_of_abs_lt hm1,
  replace hm2 : 1 < u m - a := lt_sub_iff_add_lt'.mpr hm2,
  apply lt_irrefl (u m),
  calc u m < a + 1 : sub_lt_iff_lt_add'.mp hm1
       ... < u m   : lt_sub_iff_add_lt'.mp hm2,
end
 
-- 2ª demostración
example
  (h : diverge_positivamente u)
  : ¬( a, limite u a) :=
begin
  push_neg,
  intros a ha,
  cases ha 1 (by linarith) with m1 hm1,
  cases h (a+1) with m2 hm2,
  let m := max m1 m2,
  replace hm1 : |u m - a| < 1 := by finish,
  replace hm1 : u m - a < 1   := lt_of_abs_lt hm1,
  replace hm2 : u m > a + 1   := by finish,
  replace hm2 : 1 < u m - a   := lt_sub_iff_add_lt'.mpr hm2,
  apply lt_irrefl (u m),
  calc u m < a + 1 : by linarith
       ... < u m   : by linarith
end
 
-- 3ª demostración
example
  (h : diverge_positivamente u)
  : ¬( a, limite u a) :=
begin
  push_neg,
  intros a ha,
  cases ha 1 (by linarith) with m1 hm1,
  cases h (a+1) with m2 hm2,
  let m := max m1 m2,
  specialize hm1 m (le_max_left _ _),
  specialize hm2 m (le_max_right _ _),
  rw abs_lt at hm1,
  linarith,
end

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory Las_sucesiones_divergentes_positivas_no_tienen_limites_finitos
imports Main HOL.Real
begin
 
definition limite :: "(nat ⇒ real) ⇒ real ⇒ bool"
  where "limite u a ⟷ (∀ε>0. ∃N. ∀k≥N. ¦u k - a¦ < ε)"
 
definition diverge_positivamente :: "(nat ⇒ real) ⇒ bool"
  where "diverge_positivamente u ⟷ (∀A. ∃m. ∀n≥m. u n > A)"
 
(* 1ª demostración *)
lemma
  assumes "diverge_positivamente u"
  shows   "∄a. limite u a"
proof (rule notI)
  assume "∃a. limite u a"
  then obtain a where "limite u a" try
    by auto
  then obtain m1 where hm1 : "∀n≥m1. ¦u n - a¦ < 1"
    using limite_def by fastforce
  obtain m2 where hm2 : "∀n≥m2. u n > a + 1"
    using assms diverge_positivamente_def by blast
  let ?m = "max m1 m2"
  have "u ?m < u ?m" using hm1 hm2
  proof -
    have "?m ≥ m1"
      by (rule max.cobounded1)
    have "?m ≥ m2"
      by (rule max.cobounded2)
    have "u ?m - a < 1"
      using hm1 ‹?m ≥ m1› by fastforce
    moreover have "u ?m > a + 1"
      using hm2 ‹?m ≥ m2› by simp
    ultimately show "u ?m < u ?m"
      by simp
  qed
  then show False
    by auto
qed
 
(* 2ª demostración *)
lemma
  assumes "diverge_positivamente u"
  shows   "∄a. limite u a"
proof (rule notI)
  assume "∃a. limite u a"
  then obtain a where "limite u a" try
    by auto
  then obtain m1 where hm1 : "∀n≥m1. ¦u n - a¦ < 1"
    using limite_def by fastforce
  obtain m2 where hm2 : "∀n≥m2. u n > a + 1"
    using assms diverge_positivamente_def by blast
  let ?m = "max m1 m2"
  have "1 < 1"
  proof -
    have "1 < u ?m - a"
      using hm2
      by (metis add.commute less_diff_eq max.cobounded2)
    also have "… < 1"
      using hm1
      by (metis abs_less_iff max_def order_refl)
    finally show "1 < 1" .
  qed
  then show False
    by auto
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Las clases de equivalencia de elementos no relacionados son disjuntas

Demostrar que las clases de equivalencia de elementos no relacionados son disjuntas.

Para ello, completar la siguiente teoría de Lean:

import tactic
 
variable  {X : Type}
variables {x y: X}
variable  {R : X  X  Prop}
 
def clase (R : X  X  Prop) (x : X) :=
  {y : X | R x y}
 
example
  (h : equivalence R)
  (hxy : ¬ R x y)
  : clase R x ∩ clase R y =:=
sorry

[expand title=»Soluciones con Lean»]

import tactic
 
variable  {X : Type}
variables {x y: X}
variable  {R : X  X  Prop}
 
def clase (R : X  X  Prop) (x : X) :=
  {y : X | R x y}
 
-- 1ª demostración
example
  (h : equivalence R)
  (hxy : ¬ R x y)
  : clase R x ∩ clase R y =:=
begin
  rcases h with ⟨hr, hs, ht⟩,
  by_contradiction h1,
  apply hxy,
  have h2 :  z, z ∈ clase R x ∩ clase R y,
    { contrapose h1,
      intro h1a,
      apply h1a,
      push_neg at h1,
      exact set.eq_empty_iff_forall_not_mem.mpr h1, },
  rcases h2 with ⟨z, hxz, hyz⟩,
  replace hxz : R x z := hxz,
  replace hyz : R y z := hyz,
  have hzy : R z y := hs hyz,
  exact ht hxz hzy,
end
 
-- 2ª demostración
example
  (h : equivalence R)
  (hxy : ¬ R x y)
  : clase R x ∩ clase R y =:=
begin
  rcases h with ⟨hr, hs, ht⟩,
  by_contradiction h1,
  have h2 :  z, z ∈ clase R x ∩ clase R y,
    { by finish [set.eq_empty_iff_forall_not_mem]},
  apply hxy,
  rcases h2 with ⟨z, hxz, hyz⟩,
  exact ht hxz (hs hyz),
end

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

theory Las_clases_de_equivalencia_de_elementos_no_relacionados_son_disjuntas
imports Main
begin
 
definition clase :: "('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ 'a set"
  where "clase R x = {y. R x y}"
 
(* 1ª demostración *)
lemma
  assumes "equivp R"
          "¬(R x y)"
  shows "clase R x ∩ clase R y = {}"
proof -
  have "∀z. z ∈ clase R x ⟶ z ∉ clase R y"
  proof (intro allI impI)
    fix z
    assume "z ∈ clase R x"
    then have "R x z"
      using clase_def by (metis CollectD)
    show "z ∉ clase R y"
    proof (rule notI)
      assume "z ∈ clase R y"
      then have "R y z"
        using clase_def by (metis CollectD)
      then have "R z y"
        using assms(1) by (simp only: equivp_symp)
      with ‹R x z› have "R x y"
        using assms(1) by (simp only: equivp_transp)
      with ‹¬R x y› show False
        by (rule notE)
    qed
  qed
  then show "clase R x ∩ clase R y = {}"
    by (simp only: disjoint_iff)
qed
 
(* 2ª demostración *)
lemma
  assumes "equivp R"
          "¬(R x y)"
  shows "clase R x ∩ clase R y = {}"
proof -
  have "∀z. z ∈ clase R x ⟶ z ∉ clase R y"
  proof (intro allI impI)
    fix z
    assume "z ∈ clase R x"
    then have "R x z"
      using clase_def by fastforce
    show "z ∉ clase R y"
    proof (rule notI)
      assume "z ∈ clase R y"
      then have "R y z"
        using clase_def by fastforce
      then have "R z y"
        using assms(1) by (simp only: equivp_symp)
      with ‹R x z› have "R x y"
        using assms(1) by (simp only: equivp_transp)
      with ‹¬R x y› show False
        by simp
    qed
  qed
  then show "clase R x ∩ clase R y = {}"
    by (simp only: disjoint_iff)
qed
 
(* 3ª demostración *)
lemma
  assumes "equivp R"
          "¬(R x y)"
  shows "clase R x ∩ clase R y = {}"
  using assms
  by (metis clase_def
            CollectD
            equivp_symp
            equivp_transp
            disjoint_iff)
 
(* 4ª demostración *)
lemma
  assumes "equivp R"
          "¬(R x y)"
  shows "clase R x ∩ clase R y = {}"
  using assms
  by (metis equivp_def
            clase_def
            CollectD
            disjoint_iff_not_equal)
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]