Menu Close

Etiqueta: IH.CollectD

El conjunto de las clases de equivalencia es una partición

Demostrar que si R es una relación de equivalencia en X, entonces las clases de equivalencia de R es una partición de X.

Para ello, completar la siguiente teoría de Lean:

import tactic
 
variable  {X : Type}
variables {x y: X}
variable  {R : X  X  Prop}
 
def clase (R : X  X  Prop) (x : X) :=
  {y : X | R x y}
 
def particion (A : set (set X)) : Prop :=
  ( x, ( B ∈ A, x ∈ B   C ∈ A, x ∈ C  B = C))  ∅ ∉ A
 
example
  (h : equivalence R)
  : particion {a : set X |  s : X, a = clase R s} :=
sorry
Soluciones con Lean
import tactic
 
variable  {X : Type}
variables {x y: X}
variable  {R : X  X  Prop}
 
def clase (R : X  X  Prop) (x : X) :=
  {y : X | R x y}
 
def particion (A : set (set X)) : Prop :=
  ( x, ( B ∈ A, x ∈ B   C ∈ A, x ∈ C  B = C))  ∅ ∉ A
 
lemma aux
  (h : equivalence R)
  (hxy : R x y)
  : clase R y ⊆ clase R x :=
λ z hz, h.2.2 hxy hz
 
-- 1ª demostración
example
  (h : equivalence R)
  : particion {a : set X |  s : X, a = clase R s} :=
begin
  split,
  { simp,
    intro y,
    use (clase R y),
    split,
    { use y, },
    { split,
      { exact h.1 y, },
      { intros x hx,
        apply le_antisymm,
        { exact aux h hx, },
        { exact aux h (h.2.1 hx), }}}},
  { simp,
    intros x hx,
    have h1 : x ∈ clase R x := h.1 x,
    rw ← hx at h1,
    exact set.not_mem_empty x h1, },
end
 
-- 2ª demostración
example
  (h : equivalence R)
  : particion {a : set X |  s : X, a = clase R s} :=
begin
  split,
  { simp,
    intro y,
    use (clase R y),
    split,
    { use y, },
    { split,
      { exact h.1 y, },
      { intros x hx,
        exact le_antisymm (aux h hx) (aux h (h.2.1 hx)), }}},
  { simp,
    intros x hx,
    have h1 : x ∈ clase R x := h.1 x,
    rw ← hx at h1,
    exact set.not_mem_empty x h1, },
end
 
-- 3ª demostración
example
  (h : equivalence R)
  : particion {a : set X |  s : X, a = clase R s} :=
begin
  split,
  { simp,
    intro y,
    use [clase R y,
         ⟨by use y,
          ⟨h.1 y, λ x hx, le_antisymm (aux h hx) (aux h (h.2.1 hx))⟩⟩], },
  { simp,
    intros x hx,
    have h1 : x ∈ clase R x := h.1 x,
    rw ← hx at h1,
    exact set.not_mem_empty x h1, },
end

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>

Soluciones con Isabelle/HOL
theory El_conjunto_de_las_clases_de_equivalencia_es_una_particion
imports Main
begin
 
definition clase :: "('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ 'a set"
  where "clase R x = {y. R x y}"
 
definition particion :: "('a set) set ⇒ bool" where
  "particion P ⟷ (∀x. (∃B∈P. x ∈ B ∧ (∀C∈P. x ∈ C ⟶ B = C))) ∧ {} ∉ P"
 
lemma
  fixes   R :: "'a ⇒ 'a ⇒ bool"
  assumes "equivp R"
  shows   "particion (⋃x. {clase R x})" (is "particion ?P")
proof (unfold particion_def; intro conjI)
  show "(∀x. ∃B∈?P. x ∈ B ∧ (∀C∈?P. x ∈ C ⟶ B = C))"
  proof (intro allI)
    fix x
    have "clase R x ∈ ?P"
      by auto
    moreover have "x ∈ clase R x"
      using assms clase_def equivp_def
      by (metis CollectI)
    moreover have "∀C∈?P. x ∈ C ⟶ clase R x = C"
    proof
      fix C
      assume "C ∈ ?P"
      then obtain y where "C = clase R y"
        by auto
      show "x ∈ C ⟶ clase R x = C"
      proof
        assume "x ∈ C"
        then have "R y x"
          using ‹C = clase R y› assms clase_def
          by (metis CollectD)
        then show "clase R x = C"
          using assms ‹C = clase R y› clase_def equivp_def
          by metis
      qed
    qed
    ultimately show "∃B∈?P. x ∈ B ∧ (∀C∈?P. x ∈ C ⟶ B = C)"
      by blast
  qed
next
  show "{} ∉ ?P"
  proof
    assume "{} ∈ ?P"
    then obtain x where "{} = clase R x"
      by auto
    moreover have "x ∈ clase R x"
      using assms clase_def equivp_def
      by (metis CollectI)
    ultimately show False
      by simp
  qed
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>

Las clases de equivalencia de elementos no relacionados son disjuntas

Demostrar que las clases de equivalencia de elementos no relacionados son disjuntas.

Para ello, completar la siguiente teoría de Lean:

import tactic
 
variable  {X : Type}
variables {x y: X}
variable  {R : X  X  Prop}
 
def clase (R : X  X  Prop) (x : X) :=
  {y : X | R x y}
 
example
  (h : equivalence R)
  (hxy : ¬ R x y)
  : clase R x ∩ clase R y =:=
sorry
Soluciones con Lean
import tactic
 
variable  {X : Type}
variables {x y: X}
variable  {R : X  X  Prop}
 
def clase (R : X  X  Prop) (x : X) :=
  {y : X | R x y}
 
-- 1ª demostración
example
  (h : equivalence R)
  (hxy : ¬ R x y)
  : clase R x ∩ clase R y =:=
begin
  rcases h with ⟨hr, hs, ht⟩,
  by_contradiction h1,
  apply hxy,
  have h2 :  z, z ∈ clase R x ∩ clase R y,
    { contrapose h1,
      intro h1a,
      apply h1a,
      push_neg at h1,
      exact set.eq_empty_iff_forall_not_mem.mpr h1, },
  rcases h2 with ⟨z, hxz, hyz⟩,
  replace hxz : R x z := hxz,
  replace hyz : R y z := hyz,
  have hzy : R z y := hs hyz,
  exact ht hxz hzy,
end
 
-- 2ª demostración
example
  (h : equivalence R)
  (hxy : ¬ R x y)
  : clase R x ∩ clase R y =:=
begin
  rcases h with ⟨hr, hs, ht⟩,
  by_contradiction h1,
  have h2 :  z, z ∈ clase R x ∩ clase R y,
    { by finish [set.eq_empty_iff_forall_not_mem]},
  apply hxy,
  rcases h2 with ⟨z, hxz, hyz⟩,
  exact ht hxz (hs hyz),
end

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>

Soluciones con Isabelle/HOL
theory Las_clases_de_equivalencia_de_elementos_no_relacionados_son_disjuntas
imports Main
begin
 
definition clase :: "('a ⇒ 'a ⇒ bool) ⇒ 'a ⇒ 'a set"
  where "clase R x = {y. R x y}"
 
(* 1ª demostración *)
lemma
  assumes "equivp R"
          "¬(R x y)"
  shows "clase R x ∩ clase R y = {}"
proof -
  have "∀z. z ∈ clase R x ⟶ z ∉ clase R y"
  proof (intro allI impI)
    fix z
    assume "z ∈ clase R x"
    then have "R x z"
      using clase_def by (metis CollectD)
    show "z ∉ clase R y"
    proof (rule notI)
      assume "z ∈ clase R y"
      then have "R y z"
        using clase_def by (metis CollectD)
      then have "R z y"
        using assms(1) by (simp only: equivp_symp)
      with ‹R x z› have "R x y"
        using assms(1) by (simp only: equivp_transp)
      with ‹¬R x y› show False
        by (rule notE)
    qed
  qed
  then show "clase R x ∩ clase R y = {}"
    by (simp only: disjoint_iff)
qed
 
(* 2ª demostración *)
lemma
  assumes "equivp R"
          "¬(R x y)"
  shows "clase R x ∩ clase R y = {}"
proof -
  have "∀z. z ∈ clase R x ⟶ z ∉ clase R y"
  proof (intro allI impI)
    fix z
    assume "z ∈ clase R x"
    then have "R x z"
      using clase_def by fastforce
    show "z ∉ clase R y"
    proof (rule notI)
      assume "z ∈ clase R y"
      then have "R y z"
        using clase_def by fastforce
      then have "R z y"
        using assms(1) by (simp only: equivp_symp)
      with ‹R x z› have "R x y"
        using assms(1) by (simp only: equivp_transp)
      with ‹¬R x y› show False
        by simp
    qed
  qed
  then show "clase R x ∩ clase R y = {}"
    by (simp only: disjoint_iff)
qed
 
(* 3ª demostración *)
lemma
  assumes "equivp R"
          "¬(R x y)"
  shows "clase R x ∩ clase R y = {}"
  using assms
  by (metis clase_def
            CollectD
            equivp_symp
            equivp_transp
            disjoint_iff)
 
(* 4ª demostración *)
lemma
  assumes "equivp R"
          "¬(R x y)"
  shows "clase R x ∩ clase R y = {}"
  using assms
  by (metis equivp_def
            clase_def
            CollectD
            disjoint_iff_not_equal)
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>