Suma de potencias de dos

Demostrar que

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Fórmula de Gauss de la suma de los primeros números naturales

La fórmula de Gauss para la suma de los primeros números naturales es

En un ejercicio anterior se ha demostrado dicha fórmula por inducción. Otra forma de demostrarla, sin usar inducción, es la siguiente: La suma se puede escribir de dos maneras

Al sumar, se observa que cada par de números de la misma columna da como suma (n-1), y puesto que hay n columnas en total, se sigue

lo que prueba la fórmula.

Demostrar la fórmula de Gauss siguiendo el procedimiento anterior.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Suma de los primeros cubos

Demostrar que la suma de los primeros cubos

es (n(n+1)/2)²

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Suma de los primeros cuadrados

Demostrar que la suma de los primeros cuadrados

es n(n+1)(2n+1)/6.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Suma de progresión geométrica

Demostrar que la suma de los términos de la progresión geométrica

es

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Suma de progresión aritmética

Demostrar que la suma de los términos de la progresión aritmética

es (n + 1) × (2 × a + n × d) / 2.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Si f es continua en a y el límite de u(n) es a, entonces el límite de f(u(n)) es f(a)

En Lean, se puede definir que a es el límite de la sucesión u por

y que f es continua en a por

Demostrar que si f es continua en a y el límite de uₙ es a, entonces el límite de f(uₙ) es f(a).

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Los límites son menores o iguales que las cotas superiores

En Lean, se puede definir que a es el límite de la sucesión u por

y que a es una cota superior de u por

Demostrar que si x es el límite de la sucesión u e y es una cota superior de u, entonces x ≤ y.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Pruebas de «(∀ ε > 0, y ≤ x + ε) → y ≤ x»

Sean x, y ∈ ℝ. Demostrar que

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Si x es el supremo de A, entonces ∀ y, y < x → ∃ a ∈ A, y < a

En Lean se puede definir que x es una cota superior de A por

y x es el supremo de A por

Demostrar que si x es el supremo de A, entonces

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]