Las sucesiones convergentes son sucesiones de Cauchy

Nota: El problema de hoy lo ha escrito Sara Díaz Real y es uno de los que se encuentran en su Trabajo Fin de Máster Formalización en Lean de problemas de las Olimpiadas Internacionales de Matemáticas (IMO). Concretamente, el problema se encuentra en la página 52 junto con la demostración en lenguaje natural.


En Lean, una sucesión u₀, u₁, u₂, … se puede representar mediante una función (u : ℕ → ℝ) de forma que u(n) es uₙ.

Se define

  • el valor absoluto de x por

  • a es un límite de la sucesión u, por

  • la sucesión u es convergente por

  • la sucesión u es de Cauchy por

Demostrar que las sucesiones convergentes son de Cauchy.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

La composición por la izquierda con una inyectiva es una operación inyectiva

Sean f₁ y f₂ funciones de X en Y y g una función de X en Y. Demostrar que si g es inyectiva y g ∘ f₁ = g ∘ f₂, entonces f₁ = f₂.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

La igualdad de valores es una relación de equivalencia

Sean X e Y dos conjuntos y f una función de X en Y. Se define la relación R en X de forma que x está relacionado con y si f(x) = f(y).

Demostrar que R es una relación de equivalencia.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

La equipotencia es una relación de equivalencia

Dos conjuntos A y B son equipotentes (y se denota por A ≃ B) si existe una aplicación biyectiva entre ellos. La equipotencia se puede definir en Lean por

Demostrar que la relación de equipotencia es simétrica.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

La equipotencia es una relación transitiva

Dos conjuntos A y B son equipotentes (y se denota por A ≃ B) si existe una aplicación biyectiva entre ellos. La equipotencia se puede definir en Lean por

Demostrar que la relación de equipotencia es transitiva.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

La composición de funciones biyectivas es biyectiva

Demostrar que la composición de dos funciones biyectivas es una función biyectiva.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

La composición de funciones suprayectivas es suprayectiva

Demostrar que la composición de dos funciones suprayectivas es una función suprayectiva.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

La composición de funciones inyectivas es inyectiva

Demostrar que la composición de dos funciones inyectivas es una función inyectiva.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

La equipotencia es una relación simétrica

Dos conjuntos A y B son equipotentes (y se denota por A ≃ B) si existe una aplicación biyectiva entre ellos. La equipotencia se puede definir en Lean por

Demostrar que la relación de equipotencia es simétrica.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

La inversa de una función biyectiva es biyectiva

En Lean se puede definir que g es una inversa de f por

Demostrar que si la función f es biyectiva y g es una inversa de f, entonces g es biyectiva.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]