Límite de sucesiones constantes

En Lean, una sucesión u₀, u₁, u₂, … se puede representar mediante una función (u : ℕ → ℝ) de forma que u(n) es uₙ.

Se define que a es el límite de la sucesión u, por

donde se usa la notación |x| para el valor absoluto de x

Demostrar que el límite de la sucesión constante c es c.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Los monoides booleanos son conmutativos

Un monoide es un conjunto junto con una operación binaria que es asociativa y tiene elemento neutro.

Un monoide M es booleano si

y es conmutativo si

En Lean, está definida la clase de los monoides (como monoid) y sus propiedades características son

Demostrar que los monoides booleanos son conmutativos.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Potencias de potencias en monoides

En los monoides se define la potencia con exponentes naturales. En Lean la potencia x^n se caracteriza por los siguientes lemas:

Demostrar que si M es un monoide, a ∈ M y m, n ∈ ℕ, entonces

Indicación: Se puede usar el lema

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Propiedad cancelativa en grupos

Sea G un grupo y a,b,c ∈ G. Demostrar que si a * b = a* c, entonces b = c.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Inverso del inverso en grupos

Sea G un grupo y a ∈ G. Demostrar que

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Referencia

Propiedad 3.20 del libro Abstract algebra: Theory and applications de Thomas W. Judson.

Inverso del producto

Sea G un grupo y a, b ∈ G. Entonces,

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Referencia

Propiedad 3.19 del libro Abstract algebra: Theory and applications de Thomas W. Judson.

Unicidad de los inversos en los grupos

Demostrar que si a es un elemento de un grupo G, entonces a tiene un único inverso; es decir, si b es un elemento de G tal que a * b = 1, entonces a⁻¹ = b.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Referencia

Propiedad 3.18 del libro Abstract algebra: Theory and applications de Thomas W. Judson.

Unicidad del elemento neutro en los grupos

Demostrar que un grupo sólo posee un elemento neutro.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Referencia

Propiedad 3.17 del libro Abstract algebra: Theory and applications de Thomas W. Judson.

Caracterización de producto igual al primer factor

Un monoide cancelativo por la izquierda es un monoide M que cumple la propiedad cancelativa por la izquierda; es decir, para todo a, b ∈ M

En Lean la clase de los monoides cancelativos por la izquierda es left_cancel_monoid y la propiedad cancelativa por la izquierda es

Demostrar que si M es un monoide cancelativo por la izquierda y a, b ∈ M, entonces

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean,

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

Unicidad de inversos en monoides conmutativos

Demostrar que en los monoides conmutativos, si un elemento tiene un inverso por la derecha, dicho inverso es único.

Para ello, completar la siguiente teoría de Lean:

[expand title=»Soluciones con Lean»]

Se puede interactuar con la prueba anterior en esta sesión con Lean,

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]

[expand title=»Soluciones con Isabelle/HOL»]

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>
[/expand]