Reto f (f (f b)) = f b
El problema de hoy está basado en el reto Daily Challenge #168 que se planteó ayer. El reto consiste en demostrar que si f
es una función de los booleanos en los booleanos, entonces para todo b
se verifica que f (f (f b)) = f b
.
Concretamente, el reto consiste en completar la siguiente demostración
1 2 3 4 |
lemma fixes f :: "bool ⇒ bool" shows "f (f (f b)) = f b" sorry |
Soluciones con Isabelle/HOL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
theory reto imports Main begin (* 1ª solución *) lemma "∀(f :: bool ⇒ bool). f (f (f b)) = f b" by smt (* 2ª solución *) lemma fixes f :: "bool ⇒ bool" shows "f (f (f b)) = f b" by smt (* 3ª solución *) lemma fixes f :: "bool ⇒ bool" shows "f (f (f b)) = f b" by (cases b; cases "f True"; cases "f False"; simp) (* 4ª solución *) lemma fixes f :: "bool ⇒ bool" shows "f (f (f b)) = f b" proof (cases "f True"; cases "f False"; cases b) assume "f True" "f False" "b" then have "f b = True" by simp then show "f (f (f b)) = f b" using ‹f True› by simp next assume "f True" "f False" "¬ b" then have "f b = True" by simp then show "f (f (f b)) = f b" using ‹f True› ‹f False› ‹¬ b› by simp next assume "f True" "¬ f False" "b" then have "f b = True" by simp then show "f (f (f b)) = f b" using ‹f True› ‹¬ f False› ‹b› by simp next assume "f True" "¬ f False" "¬ b" then have "f b = False" by simp then show "f (f (f b)) = f b" using ‹f True› ‹¬ f False› ‹¬ b› by simp next assume "¬ f True" "f False" "b" then have "f b = False" by simp then show "f (f (f b)) = f b" using ‹¬ f True› ‹f False› ‹b› by simp next assume "¬ f True" "f False" "¬ b" then have "f b = True" by simp then show "f (f (f b)) = f b" using ‹¬ f True› ‹f False› ‹¬ b› by simp next assume "¬ f True" "¬ f False" "b" then have "f b = False" by simp then show "f (f (f b)) = f b" using ‹¬ f True› ‹¬ f False› ‹b› by simp next assume "¬ f True" "¬ f False" "¬ b" then have "f b = False" by simp then show "f (f (f b)) = f b" using ‹¬ f True› ‹¬ f False› ‹¬b› by simp qed (* 5ª solución *) lemma fixes f :: "bool ⇒ bool" shows "f (f (f b)) = f b" proof (cases "f True"; cases "f False"; cases b) assume "f True" "f False" "b" have "f (f (f b)) = f (f (f True))" using ‹b› by simp also have "… = f (f True)" using ‹f True› by simp also have "… = f True" using ‹f True› by simp also have "… = f b" using ‹b› by simp finally show "f (f (f b)) = f b" by this next assume "f True" "f False" "¬ b" have "f (f (f b)) = f (f (f False))" using ‹¬b› by simp also have "… = f (f True)" using ‹f False› by simp also have "… = f True" using ‹f True› by simp also have "… = f False" using ‹f True› ‹f False› by simp also have "… = f b" using ‹¬ b› by simp finally show "f (f (f b)) = f b" by this next assume "f True" "¬ f False" "b" have "f (f (f b)) = f (f (f True))" using ‹b› by simp also have "… = f (f True)" using ‹f True› by simp also have "… = f True" using ‹f True› by simp also have "… = f b" using ‹b› by simp finally show "f (f (f b)) = f b" by this next assume "f True" "¬ f False" "¬ b" have "f (f (f b)) = f (f (f False))" using ‹¬b› by simp also have "… = f (f False)" using ‹¬ f False› by simp also have "… = f False" using ‹¬ f False› by simp also have "… = f b" using ‹¬ b› by simp finally show "f (f (f b)) = f b" by this next assume "¬ f True" "f False" "b" have "f (f (f b)) = f (f (f True))" using ‹b› by simp also have "… = f (f False)" using ‹¬ f True› by simp also have "… = f True" using ‹f False› by simp also have "… = f b" using ‹b› by simp finally show "f (f (f b)) = f b" by this next assume "¬ f True" "f False" "¬ b" have "f (f (f b)) = f (f (f False))" using ‹¬b› by simp also have "… = f (f True)" using ‹f False› by simp also have "… = f False" using ‹¬ f True› by simp also have "… = f b" using ‹¬ b› by simp finally show "f (f (f b)) = f b" by this next assume "¬ f True" "¬ f False" "b" have "f (f (f b)) = f (f (f True))" using ‹b› by simp also have "… = f (f False)" using ‹¬ f True› by simp also have "… = f False" using ‹¬ f False› by simp also have "… = False" using ‹¬ f False› by simp also have "… = f True" using ‹¬ f True› by simp also have "… = f b" using ‹b› by simp finally show "f (f (f b)) = f b" by this next assume "¬ f True" "¬ f False" "¬ b" have "f (f (f b)) = f (f (f False))" using ‹¬b› by simp also have "… = f (f False)" using ‹¬ f False› by simp also have "… = f False" using ‹¬ f False› by simp also have "… = f b" using ‹¬ b› by simp finally show "f (f (f b)) = f b" by this qed (* 6ª solución *) theorem fixes f :: "bool ⇒ bool" shows "f (f (f b)) = f b" proof (cases b) assume b: b show ?thesis proof (cases "f True") assume ft: "f True" show ?thesis using b ft by auto next assume ft: "¬ f True" show ?thesis proof (cases "f False") assume ff: "f False" show ?thesis using b ft ff by auto next assume ff: "¬ f False" show ?thesis using b ft ff by auto qed qed next assume b: "¬ b" show ?thesis proof (cases "f True") assume ft: "f True" show ?thesis proof (cases "f False") assume ff: "f False" show ?thesis using b ft ff by auto next assume ff: "¬ f False" show ?thesis using b ft ff by auto qed next assume ft: "¬ f True" show ?thesis proof (cases "f False") assume ff: "f False" show ?thesis using b ft ff by auto next assume ff: "¬ f False" show ?thesis using b ft ff by auto qed qed qed (* 7ª solución *) theorem fixes f :: "bool ⇒ bool" shows "f (f (f b)) = f b" by (cases b "f True" "f False" rule: bool.exhaust [ case_product bool.exhaust , case_product bool.exhaust]) auto end |
Otras soluciones
- Se pueden escribir otras soluciones en los comentarios.
- El código se debe escribir entre una línea con <pre lang="isar"> y otra con </pre>