Diferencia entre revisiones de «Relación 6»
De Razonamiento automático (2018-19)
Línea 793: | Línea 793: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon *) | + | (* pabalagon benber *) |
lemma ejercicio_25: | lemma ejercicio_25: | ||
assumes "p" | assumes "p" | ||
Línea 804: | Línea 804: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon *) | + | (* pabalagon benber *) |
lemma ejercicio_26: | lemma ejercicio_26: | ||
assumes "q" | assumes "q" | ||
Línea 823: | Línea 823: | ||
next | next | ||
assume 3: "q" thus "q ∨ p" by (rule disjI1) | assume 3: "q" thus "q ∨ p" by (rule disjI1) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_27_1: | ||
+ | assumes "p ∨ q" | ||
+ | shows "q ∨ p" | ||
+ | proof - | ||
+ | have "p ∨ q" using assms . | ||
+ | moreover have "p ⟹ q ∨ p" by (rule disjI2) | ||
+ | moreover have "q ⟹ q ∨ p" by (rule disjI1) | ||
+ | ultimately show "q ∨ p" by (rule disjE) | ||
qed | qed | ||
Línea 842: | Línea 853: | ||
thus "p ∨ r" by (rule disjI2) | thus "p ∨ r" by (rule disjI2) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_28_1: | ||
+ | assumes "q ⟶ r" | ||
+ | shows "p ∨ q ⟶ p ∨ r" | ||
+ | proof | ||
+ | assume "p ∨ q" | ||
+ | moreover have "p ⟹ p ∨ r" by (rule disjI1) | ||
+ | moreover have "q ⟹ p ∨ r" | ||
+ | proof (rule disjI2) | ||
+ | assume "q" | ||
+ | with `q ⟶ r` show "r" by (rule mp) | ||
+ | qed | ||
+ | ultimately show "p ∨ r" by (rule disjE) | ||
qed | qed | ||
Línea 858: | Línea 884: | ||
assume "p" thus "p" . | assume "p" thus "p" . | ||
qed | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_29_1: | ||
+ | assumes "p ∨ p" | ||
+ | shows "p" | ||
+ | using assms by (rule disjE) | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 864: | Línea 896: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon *) | + | (* pabalagon benber *) |
lemma ejercicio_30: | lemma ejercicio_30: | ||
assumes "p" | assumes "p" | ||
Línea 890: | Línea 922: | ||
assume "r" thus ?thesis by (rule disjI2) | assume "r" thus ?thesis by (rule disjI2) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_31_1: | ||
+ | assumes "p ∨ (q ∨ r)" | ||
+ | shows "(p ∨ q) ∨ r" | ||
+ | proof - | ||
+ | have "p ∨ (q ∨ r)" using assms . | ||
+ | moreover { | ||
+ | assume "p" | ||
+ | hence "p ∨ q" by (rule disjI1) | ||
+ | hence "(p ∨ q) ∨ r" by (rule disjI1) | ||
+ | } | ||
+ | moreover { | ||
+ | assume "q ∨ r" | ||
+ | moreover { | ||
+ | assume "q" | ||
+ | hence "p ∨ q" by (rule disjI2) | ||
+ | hence "(p ∨ q) ∨ r" by (rule disjI1) | ||
+ | } | ||
+ | moreover { | ||
+ | assume "r" | ||
+ | hence "(p ∨ q) ∨ r" by (rule disjI2) | ||
+ | } | ||
+ | ultimately have "(p ∨ q) ∨ r" by (rule disjE) | ||
+ | } | ||
+ | ultimately show "(p ∨ q) ∨ r" by (rule disjE) | ||
qed | qed | ||
Línea 912: | Línea 971: | ||
assume r hence "q ∨ r" by (rule disjI2) | assume r hence "q ∨ r" by (rule disjI2) | ||
thus ?thesis by (rule disjI2) | thus ?thesis by (rule disjI2) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_32_1: | ||
+ | assumes "(p ∨ q) ∨ r" | ||
+ | shows "p ∨ (q ∨ r)" | ||
+ | proof - | ||
+ | have "(p ∨ q) ∨ r" using assms . | ||
+ | moreover { | ||
+ | assume "p ∨ q" | ||
+ | moreover { | ||
+ | assume "p" | ||
+ | hence ?thesis by (rule disjI1) | ||
+ | } | ||
+ | moreover { | ||
+ | assume "q" | ||
+ | hence "q ∨ r" by (rule disjI1) | ||
+ | hence ?thesis by (rule disjI2) | ||
+ | } | ||
+ | ultimately have ?thesis by (rule disjE) | ||
+ | } | ||
+ | moreover { | ||
+ | assume "r" | ||
+ | hence "q ∨ r" by (rule disjI2) | ||
+ | hence ?thesis by (rule disjI2) | ||
+ | } | ||
+ | ultimately show ?thesis by (rule disjE) | ||
qed | qed | ||
Línea 935: | Línea 1021: | ||
show "q ∨ r" using 1 by (rule conjunct2) | show "q ∨ r" using 1 by (rule conjunct2) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_33_1: | ||
+ | assumes "p ∧ (q ∨ r)" | ||
+ | shows "(p ∧ q) ∨ (p ∧ r)" | ||
+ | proof - | ||
+ | have "p" using assms by (rule conjunct1) | ||
+ | |||
+ | have "q ∨ r" using assms by (rule conjunct2) | ||
+ | moreover { | ||
+ | assume "q" | ||
+ | with `p` have "p ∧ q" by (rule conjI) | ||
+ | hence ?thesis by (rule disjI1) | ||
+ | } | ||
+ | moreover { | ||
+ | assume "r" | ||
+ | with `p` have "p ∧ r" by (rule conjI) | ||
+ | hence ?thesis by (rule disjI2) | ||
+ | } | ||
+ | ultimately show ?thesis by (rule disjE) | ||
qed | qed | ||
Línea 956: | Línea 1063: | ||
have p using 4 by (rule conjunct1) | have p using 4 by (rule conjunct1) | ||
thus ?thesis using 5 by (rule conjI) | thus ?thesis using 5 by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_34_1: | ||
+ | assumes "(p ∧ q) ∨ (p ∧ r)" | ||
+ | shows "p ∧ (q ∨ r)" | ||
+ | proof - | ||
+ | have "(p ∧ q) ∨ (p ∧ r)" using assms . | ||
+ | moreover { | ||
+ | assume "p ∧ q" | ||
+ | hence "p" by (rule conjunct1) | ||
+ | moreover { | ||
+ | have "q" using `p ∧ q` by (rule conjunct2) | ||
+ | hence "q ∨ r" by (rule disjI1) | ||
+ | } | ||
+ | ultimately have ?thesis by (rule conjI) | ||
+ | } | ||
+ | moreover { | ||
+ | assume "p ∧ r" | ||
+ | hence "p" by (rule conjunct1) | ||
+ | moreover { | ||
+ | have "r" using `p ∧ r` by (rule conjunct2) | ||
+ | hence "q ∨ r" by (rule disjI2) | ||
+ | } | ||
+ | ultimately have ?thesis by (rule conjI) | ||
+ | } | ||
+ | ultimately show ?thesis by (rule disjE) | ||
qed | qed | ||
Línea 977: | Línea 1111: | ||
hence "p ∨ q" by (rule disjI2) | hence "p ∨ q" by (rule disjI2) | ||
thus ?thesis using 4 by (rule conjI) | thus ?thesis using 4 by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_35_1: | ||
+ | assumes "p ∨ (q ∧ r)" | ||
+ | shows "(p ∨ q) ∧ (p ∨ r)" | ||
+ | proof - | ||
+ | have "p ∨ (q ∧ r)" using assms . | ||
+ | moreover { | ||
+ | assume "p" | ||
+ | hence "p ∨ q" by (rule disjI1) | ||
+ | moreover have "p ∨ r" using `p` by (rule disjI1) | ||
+ | ultimately have ?thesis by (rule conjI) | ||
+ | } | ||
+ | moreover { | ||
+ | assume "q ∧ r" | ||
+ | { | ||
+ | have "q" using `q ∧ r` by (rule conjunct1) | ||
+ | hence "p ∨ q" by (rule disjI2) | ||
+ | } | ||
+ | moreover { | ||
+ | have "r" using `q ∧ r` by (rule conjunct2) | ||
+ | hence "p ∨ r" by (rule disjI2) | ||
+ | } | ||
+ | ultimately have ?thesis by (rule conjI) | ||
+ | } | ||
+ | ultimately show ?thesis by (rule disjE) | ||
qed | qed | ||
Línea 1003: | Línea 1164: | ||
qed | qed | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_36_1: | ||
+ | assumes "(p ∨ q) ∧ (p ∨ r)" | ||
+ | shows "p ∨ (q ∧ r)" | ||
+ | proof - | ||
+ | have "p ∨ q" using assms by (rule conjunct1) | ||
+ | moreover { | ||
+ | assume "p" | ||
+ | hence ?thesis by (rule disjI1) | ||
+ | } | ||
+ | moreover { | ||
+ | assume "q" | ||
+ | have "p ∨ r" using assms by (rule conjunct2) | ||
+ | moreover { | ||
+ | assume "p" | ||
+ | hence ?thesis by (rule disjI1) | ||
+ | } | ||
+ | moreover { | ||
+ | assume "r" | ||
+ | with `q` have "q ∧ r" by (rule conjI) | ||
+ | hence ?thesis by (rule disjI2) | ||
+ | } | ||
+ | ultimately have ?thesis by (rule disjE) | ||
+ | } | ||
+ | ultimately show ?thesis by (rule disjE) | ||
qed | qed | ||
Línea 1023: | Línea 1211: | ||
assume 6: "q" show "r" using 3 6 by (rule mp) | assume 6: "q" show "r" using 3 6 by (rule mp) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_37_1: | ||
+ | assumes "(p ⟶ r) ∧ (q ⟶ r)" | ||
+ | shows "p ∨ q ⟶ r" | ||
+ | proof | ||
+ | assume "p ∨ q" | ||
+ | moreover { | ||
+ | have "p ⟶ r" using assms by (rule conjunct1) | ||
+ | moreover assume "p" | ||
+ | ultimately have "r" by (rule mp) | ||
+ | } | ||
+ | moreover { | ||
+ | have "q ⟶ r" using assms by (rule conjunct2) | ||
+ | moreover assume "q" | ||
+ | ultimately have "r" by (rule mp) | ||
+ | } | ||
+ | ultimately show "r" by (rule disjE) | ||
qed | qed | ||
Línea 1045: | Línea 1252: | ||
assume q hence 2: "p ∨ q" by (rule disjI2) | assume q hence 2: "p ∨ q" by (rule disjI2) | ||
show r using assms(1) 2 by (rule mp) | show r using assms(1) 2 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_38_1: | ||
+ | assumes "p ∨ q ⟶ r" | ||
+ | shows "(p ⟶ r) ∧ (q ⟶ r)" | ||
+ | proof | ||
+ | show "p ⟶ r" | ||
+ | proof | ||
+ | assume "p" | ||
+ | hence "p ∨ q" by (rule disjI1) | ||
+ | with assms show "r" by (rule mp) | ||
+ | qed | ||
+ | next | ||
+ | show "q ⟶ r" | ||
+ | proof | ||
+ | assume "q" | ||
+ | hence "p ∨ q" by (rule disjI2) | ||
+ | with assms show "r" by (rule mp) | ||
qed | qed | ||
qed | qed | ||
Línea 1055: | Línea 1282: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon *) | + | (* pabalagon benber *) |
lemma ejercicio_39: | lemma ejercicio_39: | ||
assumes "p" | assumes "p" | ||
Línea 1072: | Línea 1299: | ||
proof (rule impI) | proof (rule impI) | ||
assume 2: p show q using 1 2 by (rule notE) | assume 2: p show q using 1 2 by (rule notE) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_40_1: | ||
+ | assumes "¬p" | ||
+ | shows "p ⟶ q" | ||
+ | proof | ||
+ | assume "p" | ||
+ | with `¬p` show "q" by (rule notE) | ||
qed | qed | ||
Línea 1085: | Línea 1321: | ||
proof (rule impI) | proof (rule impI) | ||
assume 2: "¬q" show "¬p" using 1 2 by (rule mt) | assume 2: "¬q" show "¬p" using 1 2 by (rule mt) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_41_1: | ||
+ | assumes "p ⟶ q" | ||
+ | shows "¬q ⟶ ¬p" | ||
+ | proof | ||
+ | assume "¬q" | ||
+ | with `p ⟶ q` show "¬p" by (rule mt) | ||
qed | qed | ||
Línea 1101: | Línea 1346: | ||
next | next | ||
assume 2: "q" show "p" using assms(2) 2 by (rule notE) | assume 2: "q" show "p" using assms(2) 2 by (rule notE) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_42_1: | ||
+ | assumes "p∨q" | ||
+ | "¬q" | ||
+ | shows "p" | ||
+ | proof - | ||
+ | note `p ∨ q` | ||
+ | moreover have "p ⟹ p" . | ||
+ | moreover { | ||
+ | assume "q" | ||
+ | with `¬q` have "p" by (rule notE) | ||
+ | } | ||
+ | ultimately show "p" by (rule disjE) | ||
qed | qed | ||
Línea 1117: | Línea 1377: | ||
next | next | ||
assume "q" thus "q" . | assume "q" thus "q" . | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_43_1: | ||
+ | assumes "p ∨ q" | ||
+ | "¬p" | ||
+ | shows "q" | ||
+ | proof - | ||
+ | note `p ∨ q` | ||
+ | moreover { | ||
+ | assume "p" | ||
+ | with `¬p` have "q" by (rule notE) | ||
+ | } | ||
+ | moreover have "q ⟹ q" . | ||
+ | ultimately show "q" by (rule disjE) | ||
qed | qed | ||
Línea 1137: | Línea 1412: | ||
assume 5: "q" show ?thesis using 3 5 by (rule notE) | assume 5: "q" show ?thesis using 3 5 by (rule notE) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_44_1: | ||
+ | assumes "p ∨ q" | ||
+ | shows "¬(¬p ∧ ¬q)" | ||
+ | proof | ||
+ | assume "¬p ∧ ¬q" | ||
+ | |||
+ | note `p ∨ q` | ||
+ | moreover { | ||
+ | from `¬p ∧ ¬q` have "¬p" by (rule conjunct1) | ||
+ | moreover assume "p" | ||
+ | ultimately have "False" by (rule notE) | ||
+ | } | ||
+ | moreover { | ||
+ | from `¬p ∧ ¬q` have "¬q" by (rule conjunct2) | ||
+ | moreover assume "q" | ||
+ | ultimately have "False" by (rule notE) | ||
+ | } | ||
+ | ultimately show "False" by (rule disjE) | ||
qed | qed | ||
Línea 1157: | Línea 1453: | ||
assume "¬q" thus ?thesis using 4 by (rule notE) | assume "¬q" thus ?thesis using 4 by (rule notE) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_45_1: | ||
+ | assumes "p ∧ q" | ||
+ | shows "¬(¬p ∨ ¬q)" | ||
+ | proof | ||
+ | assume "¬p ∨ ¬q" | ||
+ | moreover { | ||
+ | assume "¬p" | ||
+ | moreover have "p" using `p ∧ q` by (rule conjunct1) | ||
+ | ultimately have "False" by (rule notE) | ||
+ | } | ||
+ | moreover { | ||
+ | assume "¬q" | ||
+ | moreover have "q" using `p ∧ q` by (rule conjunct2) | ||
+ | ultimately have "False" by (rule notE) | ||
+ | } | ||
+ | ultimately show False by (rule disjE) | ||
qed | qed | ||
Línea 1178: | Línea 1493: | ||
assume q hence 3: "p ∨ q" by (rule disjI2) | assume q hence 3: "p ∨ q" by (rule disjI2) | ||
show False using 1 3 by (rule notE) | show False using 1 3 by (rule notE) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_46_1: | ||
+ | assumes "¬(p ∨ q)" | ||
+ | shows "¬p ∧ ¬q" | ||
+ | proof | ||
+ | show "¬p" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬¬p" | ||
+ | hence "p" by (rule notnotD) | ||
+ | hence "p ∨ q" by (rule disjI1) | ||
+ | with assms show "False" by (rule notE) | ||
+ | qed | ||
+ | next | ||
+ | show "¬q" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬¬q" | ||
+ | hence "q" by (rule notnotD) | ||
+ | hence "p ∨ q" by (rule disjI2) | ||
+ | with assms show "False" by (rule notE) | ||
qed | qed | ||
qed | qed | ||
Línea 1200: | Línea 1537: | ||
assume 6: q show ?thesis using 3 6 by (rule notE) | assume 6: q show ?thesis using 3 6 by (rule notE) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_47_1: | ||
+ | assumes "¬p ∧ ¬q" | ||
+ | shows "¬(p ∨ q)" | ||
+ | proof | ||
+ | assume "p ∨ q" | ||
+ | hence "¬(¬p ∧ ¬q)" by (rule ejercicio_44_1) | ||
+ | thus "False" using assms by (rule notE) | ||
qed | qed | ||
Línea 1220: | Línea 1567: | ||
assume "¬q" thus ?thesis using 4 by (rule notE) | assume "¬q" thus ?thesis using 4 by (rule notE) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_48_1: | ||
+ | assumes "¬p ∨ ¬q" | ||
+ | shows "¬(p ∧ q)" | ||
+ | proof | ||
+ | assume "p ∧ q" | ||
+ | hence "¬(¬p ∨ ¬q)" by (rule ejercicio_45_1) | ||
+ | thus "False" using assms by (rule notE) | ||
qed | qed | ||
Línea 1234: | Línea 1591: | ||
have "¬p" using 1 by (rule conjunct2) | have "¬p" using 1 by (rule conjunct2) | ||
thus "False" using 2 by (rule notE) | thus "False" using 2 by (rule notE) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_49_1: | ||
+ | "¬(p ∧ ¬p)" | ||
+ | proof | ||
+ | assume "p ∧ ¬p" | ||
+ | hence "¬p" by (rule conjunct2) | ||
+ | moreover have "p" using `p ∧ ¬p` by (rule conjunct1) | ||
+ | ultimately show "False" by (rule notE) | ||
qed | qed | ||
Línea 1248: | Línea 1615: | ||
show p using 1 by (rule conjunct1) | show p using 1 by (rule conjunct1) | ||
show "¬p" using 1 by (rule conjunct2) | show "¬p" using 1 by (rule conjunct2) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_50_1: | ||
+ | assumes "p ∧ ¬p" | ||
+ | shows "q" | ||
+ | proof - | ||
+ | have "¬p" using `p ∧ ¬p` by (rule conjunct2) | ||
+ | moreover have "p" using `p ∧ ¬p` by (rule conjunct1) | ||
+ | ultimately show "q" by (rule notE) | ||
qed | qed | ||
Línea 1255: | Línea 1632: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon *) | + | (* pabalagon benber *) |
lemma ejercicio_51: | lemma ejercicio_51: | ||
assumes "¬¬p" | assumes "¬¬p" | ||
Línea 1277: | Línea 1654: | ||
have 4: "p ∨ ¬p" using 2 by (rule disjI2) | have 4: "p ∨ ¬p" using 2 by (rule disjI2) | ||
show "False" using 1 4 by (rule notE) | show "False" using 1 4 by (rule notE) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_52_1: | ||
+ | "p ∨ ¬p" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬ (p ∨ ¬ p)" | ||
+ | hence "¬p ∧ ¬¬p" by (rule ejercicio_46_1) | ||
+ | hence "¬p" by (rule conjunct1) | ||
+ | moreover { | ||
+ | have "¬¬p" using `¬p ∧ ¬¬p` by (rule conjunct2) | ||
+ | hence "p" by (rule notnotD) | ||
+ | } | ||
+ | ultimately show "False" by (rule notE) | ||
qed | qed | ||
Línea 1297: | Línea 1688: | ||
show False using 3 4 by (rule notE) | show False using 3 4 by (rule notE) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_53_1: | ||
+ | "((p ⟶ q) ⟶ p) ⟶ p" | ||
+ | proof | ||
+ | assume "(p ⟶ q) ⟶ p" | ||
+ | have "p ∨ ¬p" by (rule ejercicio_52_1) | ||
+ | moreover have "p ⟹ p" . | ||
+ | moreover { | ||
+ | assume "¬ p" | ||
+ | hence "p ⟶ q" by (rule ejercicio_40_1) | ||
+ | with `(p ⟶ q) ⟶ p` have "p" by (rule mp) | ||
+ | } | ||
+ | ultimately show "p" by (rule disjE) | ||
qed | qed | ||
Línea 1311: | Línea 1717: | ||
assume 2: "p" hence 3: "¬¬p" by (rule notnotI) | assume 2: "p" hence 3: "¬¬p" by (rule notnotI) | ||
have "¬¬q" using 1 3 by (rule mt) | have "¬¬q" using 1 3 by (rule mt) | ||
+ | thus "q" by (rule notnotD) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_54_1: | ||
+ | assumes "¬q ⟶ ¬p" | ||
+ | shows "p ⟶ q" | ||
+ | proof | ||
+ | assume "p" | ||
+ | hence "¬¬p" by (rule notnotI) | ||
+ | with assms have "¬¬q" by (rule mt) | ||
thus "q" by (rule notnotD) | thus "q" by (rule notnotD) | ||
qed | qed | ||
Línea 1338: | Línea 1755: | ||
have 9: "p ∨ q" using 3 by (rule disjI1) | have 9: "p ∨ q" using 3 by (rule disjI1) | ||
show False using 2 9 by (rule notE) | show False using 2 9 by (rule notE) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_55_1: | ||
+ | assumes "¬(¬p ∧ ¬q)" | ||
+ | shows "p ∨ q" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬(p ∨ q)" | ||
+ | hence "¬p ∧ ¬q" by (rule ejercicio_46_1) | ||
+ | with assms show False by (rule notE) | ||
qed | qed | ||
Línea 1360: | Línea 1787: | ||
show False using 1 6 by (rule notE) | show False using 1 6 by (rule notE) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_56_1: | ||
+ | assumes "¬(¬p ∨ ¬q)" | ||
+ | shows "p ∧ q" | ||
+ | proof - | ||
+ | have "¬¬p ∧ ¬¬q" using assms by (rule ejercicio_46_1) | ||
+ | hence "¬¬p" by (rule conjunct1) | ||
+ | hence "p" by (rule notnotD) | ||
+ | moreover { | ||
+ | have "¬¬q" using `¬¬p ∧ ¬¬q` by (rule conjunct2) | ||
+ | hence "q" by (rule notnotD) | ||
+ | } | ||
+ | ultimately show "p ∧ q" by (rule conjI) | ||
qed | qed | ||
Línea 1390: | Línea 1832: | ||
qed | qed | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_57_1: | ||
+ | assumes "¬(p ∧ q)" | ||
+ | shows "¬p ∨ ¬q" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬(¬p ∨ ¬q)" | ||
+ | hence "p ∧ q" by (rule ejercicio_56_1) | ||
+ | with assms show "False" by (rule notE) | ||
qed | qed | ||
Línea 1437: | Línea 1889: | ||
hence 3: "¬p" .. | hence 3: "¬p" .. | ||
show False using 3 2 by (rule notE) | show False using 3 2 by (rule notE) | ||
+ | qed | ||
+ | |||
+ | (* benber *) | ||
+ | lemma ejercicio_58_1: | ||
+ | "(p ⟶ q) ∨ (q ⟶ p)" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬ ((p ⟶ q) ∨ (q ⟶ p))" | ||
+ | hence 1: "¬(p ⟶ q) ∧ ¬(q ⟶ p)" by (rule ejercicio_46_1) | ||
+ | |||
+ | have "p ∨ ¬p" by (rule ejercicio_52_1) | ||
+ | moreover { | ||
+ | assume "p" | ||
+ | hence "q ⟶ p" by (rule ejercicio_7_1) | ||
+ | |||
+ | have "¬(q ⟶ p)" using 1 by (rule conjunct2) | ||
+ | hence "False" using `q ⟶ p` by (rule notE) | ||
+ | } | ||
+ | moreover { | ||
+ | assume "¬p" | ||
+ | hence "p ⟶ q" by (rule ejercicio_40_1) | ||
+ | |||
+ | have "¬(p ⟶ q)" using 1 by (rule conjunct1) | ||
+ | hence "False" using `p ⟶ q` by (rule notE) | ||
+ | } | ||
+ | ultimately show "False" by (rule disjE) | ||
+ | moreover { | ||
+ | assume "p" | ||
+ | hence "q ⟶ p" by (rule ejercicio_7_1) | ||
+ | |||
+ | have "¬(q ⟶ p)" using 1 by (rule conjunct2) | ||
+ | hence "False" using `q ⟶ p` by (rule notE) | ||
+ | } | ||
qed | qed | ||
end | end | ||
</source> | </source> |
Revisión del 19:09 21 ene 2019
chapter {* R6: Deducción natural proposicional *}
theory R6_Deduccion_natural_proposicional
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 cammonagu*)
lemma ejercicio_1:
assumes 1: "p ⟶ q" and
2: "p"
shows "q"
proof -
show "q" using 1 2 by (rule mp)
qed
(* benber *)
lemma ejercicio_1_1:
assumes "p ⟶ q"
"p"
shows "q"
using assms by (rule mp)
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 cammonagu*)
lemma ejercicio_2:
assumes 1: "p ⟶ q" and
2: "q ⟶ r" and
3: "p"
shows "r"
proof -
have 4: "q" using 1 3 by (rule mp)
show "r" using 2 4 by (rule mp)
qed
(* benber *)
lemma ejercicio_2_1:
assumes "p ⟶ q"
"q ⟶ r"
"p"
shows "r"
proof -
have "q" using `p ⟶ q` `p` by (rule mp)
with `q ⟶ r` show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 cammonagu*)
lemma ejercicio_3:
assumes 1: "p ⟶ (q ⟶ r)" and
2: "p ⟶ q" and
3: "p"
shows "r"
proof -
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
(* benber *)
lemma ejercicio_3_1:
assumes "p ⟶ (q ⟶ r)"
"p ⟶ q"
"p"
shows "r"
proof -
have "q ⟶ r" using `p ⟶ (q ⟶ r)` `p` by (rule mp)
moreover have "q" using `p ⟶ q` `p` by (rule mp)
ultimately show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 cammonagu*)
lemma ejercicio_4:
assumes 1: "p ⟶ q" and
2: "q ⟶ r"
shows "p ⟶ r"
proof -
{ assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)}
thus "p ⟶ r" by (rule impI)
qed
(* benber *)
lemma ejercicio_4_1:
assumes "p ⟶ q"
"q ⟶ r"
shows "p ⟶ r"
proof
assume p
with `p ⟶ q` have "q" by (rule mp)
with `q ⟶ r` show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_5:
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
show "r" using 4 2 by (rule mp)
qed
qed
(* benber josgomrom4 *)
lemma ejercicio_5_1:
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof
assume "q"
show "p ⟶ r"
proof
assume "p"
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
thus "r" using `q` by (rule mp)
qed
qed
(* pabalagon *)
lemma ejercicio_5_2:
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{ assume 2: "q"
{ assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "r" using 4 2 by (rule mp)}
hence "p ⟶ r" by (rule impI)
}
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_6:
assumes 1: "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "p ⟶ q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
qed
(* benber josgomrom4 *)
lemma ejercicio_6_1:
assumes "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof
assume "p ⟶ q"
show "p ⟶ r"
proof
assume "p"
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
moreover from `p ⟶ q` `p` have "q" by (rule mp)
ultimately show "r" by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_7:
assumes 1: "p"
shows "q ⟶ p"
proof (rule impI)
assume 2: "q"
show "p" using 1 by this
qed
(* benber *)
lemma ejercicio_7_1:
assumes "p"
shows "q ⟶ p"
proof
show "p" using `p` .
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_8:
"p ⟶ (q ⟶ p)"
proof (rule impI)
assume 1: "p"
show "q ⟶ p"
proof (rule impI)
assume 2: "q"
show "p" using 1 by this
qed
qed
(* benber *)
lemma ejercicio_8_1:
"p ⟶ (q ⟶ p)"
using ejercicio_7_1 by (rule impI)
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_9:
assumes 1: "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "q ⟶ r"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
show "r" using 2 4 by (rule mp)
qed
qed
(* benber josgomrom4 *)
lemma ejercicio_9_1:
assumes "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof
assume "q ⟶ r"
show "p ⟶ r"
proof
assume "p"
with `p ⟶ q` have "q" by (rule mp)
with `q ⟶ r` show "r" by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_10:
assumes 1: "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof (rule impI)
assume 2: "r"
show "q ⟶ (p ⟶ s)"
proof (rule impI)
assume 3: "q"
show "p ⟶ s"
proof (rule impI)
assume 4: "p"
have 5: "q ⟶ (r ⟶ s)" using 1 4 by (rule mp)
have 6: "r ⟶ s" using 5 3 by (rule mp)
show "s" using 6 2 by (rule mp)
qed
qed
qed
(* benber josgomrom4 *)
lemma ejercicio_10_1:
assumes "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof
assume "r"
show "q ⟶ (p ⟶ s)"
proof
assume "q"
show "p ⟶ s"
proof
assume "p"
with `p ⟶ (q ⟶ (r ⟶ s))`
have "q ⟶ (r ⟶ s)" by (rule mp)
hence "r ⟶ s" using `q` by (rule mp)
thus "s" using `r` by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_11:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof (rule impI)
assume 1: "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)" using 1 ejercicio_6 by simp
qed
(* pabalagon *)
lemma ejercicio_11_2:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof (rule impI)
assume 1: "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "p ⟶ q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
qed
qed
(* benber *)
lemma ejercicio_11_1:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof
assume "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)"
proof
assume "p ⟶ q"
show "p ⟶ r"
proof
assume p
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
moreover have "q" using `p ⟶ q` `p` by (rule mp)
ultimately show r by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_12:
assumes 1: "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume 2: "p"
show "q ⟶ r"
proof (rule impI)
assume 3: "q"
have 4: "p ⟶ q"
proof (rule impI)
assume 5: "p"
show "q" using 3 by this
qed
show "r" using 1 4 by (rule mp)
qed
qed
(* benber josgomrom4 *)
lemma ejercicio_12_1:
assumes "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof
assume "p"
show "q ⟶ r"
proof
assume "q"
hence "p ⟶ q" by (rule impI)
with `(p ⟶ q) ⟶ r` show "r" by (rule mp)
qed
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_13:
assumes "p"
"q"
shows "p ∧ q"
using assms(1, 2) by (rule conjI)
(* benber josgomrom4 *)
lemma ejercicio_13_1:
assumes "p"
"q"
shows "p ∧ q"
using assms by (rule conjI)
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_14:
assumes "p ∧ q"
shows "p"
using assms(1) by (rule conjunct1)
(* benber *)
lemma ejercicio_14_1:
assumes "p ∧ q"
shows "p"
using assms by (rule conjunct1)
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_15:
assumes "p ∧ q"
shows "q"
using assms(1) by (rule conjunct2)
(* benber *)
lemma ejercicio_15_1:
assumes "p ∧ q"
shows "q"
using assms by (rule conjunct2)
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_16:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof -
have 1: "p" using assms(1) by (rule conjunct1)
have 2: "q ∧ r" using assms(1) by (rule conjunct2)
have 3: "q" using 2 by (rule conjunct1)
have 4: "r" using 2 by (rule conjunct2)
have 5: "p ∧ q" using 1 3 by (rule conjI)
show "(p ∧ q) ∧ r" using 5 4 by (rule conjI)
qed
(* benber *)
lemma ejercicio_16_1:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof - (* TODO? *)
have "q ∧ r" using assms by (rule conjunct2)
have "p" using assms by (rule conjunct1)
moreover have "q" using `q ∧ r` by (rule conjunct1)
ultimately have "p ∧ q" by (rule conjI)
moreover have "r" using `q ∧ r` by (rule conjunct2)
ultimately show "(p ∧ q) ∧ r" by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_17:
assumes 1: "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof -
have 2: "r" using 1 by (rule conjunct2)
have 3: "p ∧ q" using 1 by (rule conjunct1)
have 4: "p" using 3 by (rule conjunct1)
have 5: "q" using 3 by (rule conjunct2)
have 6: "q ∧ r" using 5 2 by (rule conjI)
show ?thesis using 4 6 by (rule conjI)
qed
(* benber *)
lemma ejercicio_17_1:
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof -
have "p ∧ q" using assms by (rule conjunct1)
have "p" using `p ∧ q` by (rule conjunct1)
moreover have "q ∧ r"
proof (rule conjI)
show "q" using `p ∧ q` by (rule conjunct2)
next
show "r" using assms by (rule conjunct2)
qed
ultimately show ?thesis by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_18:
assumes "p ∧ q"
shows "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using assms(1) by (rule conjunct2)
qed
(* benber josgomrom4 *)
lemma ejercicio_18_1:
assumes "p ∧ q"
shows "p ⟶ q"
proof
show "q" using assms by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_19:
assumes 1: "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof (rule impI)
assume 2: "p"
have 3: "p ⟶ q" using 1 by (rule conjunct1)
have 4: "p ⟶ r" using 1 by (rule conjunct2)
have 5: "q" using 3 2 by (rule mp)
have 6: "r" using 4 2 by (rule mp)
show "q ∧ r" using 5 6 by (rule conjI)
qed
(* benber *)
lemma ejercicio_19_1:
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof
assume p
show "q ∧ r"
proof
have "p ⟶ q" using assms by (rule conjunct1)
thus "q" using `p` by (rule mp)
next
have "p ⟶ r" using assms by (rule conjunct2)
thus "r" using `p` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_20:
assumes 1: "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof (rule conjI)
show "p ⟶ q"
proof (rule impI)
assume 2: "p"
have 3: "q ∧ r" using 1 2 by (rule mp)
show 4: "q" using 3 by (rule conjunct1)
qed
show "p ⟶ r"
proof (rule impI)
assume 2: "p"
have 3: "q ∧ r" using 1 2 by (rule mp)
show 4: "r" using 3 by (rule conjunct2)
qed
qed
(* benber *)
lemma ejercicio_20_1:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof
show "p ⟶ q"
proof
assume "p"
with assms have "q ∧ r" by (rule mp)
thus "q" by (rule conjunct1)
qed
next
show "p ⟶ r"
proof
assume "p"
with assms have "q ∧ r" by (rule mp)
thus "r" by (rule conjunct2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_21:
assumes 1: "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume 2: "p ∧ q"
have 3: "p" using 2 by (rule conjunct1)
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 by (rule conjunct2)
show "r" using 4 5 by (rule mp)
qed
(* benber *)
lemma ejercicio_21_1:
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof
assume "p ∧ q"
hence "p" by (rule conjunct1)
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
moreover from `p ∧ q` have "q" by (rule conjunct2)
ultimately show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_22:
assumes 1: "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume 2: "p"
show "q ⟶ r"
proof (rule impI)
assume 3: "q"
have 4: "p ∧ q" using 2 3 by (rule conjI)
show "r" using 1 4 by (rule mp)
qed
qed
(* benber *)
lemma ejercicio_22_1:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof
assume "p"
show "q ⟶ r"
proof
assume "q"
with `p` have "p ∧ q" by (rule conjI)
with `p ∧ q ⟶ r` show "r" by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_23:
assumes 1: "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume 2: "p ∧ q"
have 3: "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using 2 by (rule conjunct2)
qed
show "r" using 1 3 by (rule mp)
qed
(* benber *)
lemma ejercicio_23_1:
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof
assume "p ∧ q"
hence "q" by (rule conjunct2)
hence "p ⟶ q" by (rule impI)
with `(p ⟶ q) ⟶ r` show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_24:
assumes 1: "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof (rule impI)
assume 2: "p ⟶ q"
have 3: "p" using 1 by (rule conjunct1)
have 4: "q ⟶ r" using 1 by (rule conjunct2)
have 5: "q" using 2 3 by (rule mp)
show 6: "r" using 4 5 by (rule mp)
qed
(* benber *)
lemma ejercicio_24_1:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof
have "q ⟶ r" using assms by (rule conjunct2)
assume "p ⟶ q"
moreover have "p" using assms by (rule conjunct1)
ultimately have "q" by (rule mp)
with `q ⟶ r` show r by (rule mp)
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
(* pabalagon benber *)
lemma ejercicio_25:
assumes "p"
shows "p ∨ q"
using assms(1) by (rule disjI1)
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
(* pabalagon benber *)
lemma ejercicio_26:
assumes "q"
shows "p ∨ q"
using assms(1) by (rule disjI2)
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_27:
assumes 1: "p ∨ q"
shows "q ∨ p"
using 1 proof (rule disjE)
assume 2: "p" thus "q ∨ p" by (rule disjI2)
next
assume 3: "q" thus "q ∨ p" by (rule disjI1)
qed
(* benber *)
lemma ejercicio_27_1:
assumes "p ∨ q"
shows "q ∨ p"
proof -
have "p ∨ q" using assms .
moreover have "p ⟹ q ∨ p" by (rule disjI2)
moreover have "q ⟹ q ∨ p" by (rule disjI1)
ultimately show "q ∨ p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_28:
assumes 1: "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof (rule impI)
assume 2: "p ∨ q" show "p ∨ r" using 2
proof (rule disjE)
assume 3: p thus "p ∨ r" by (rule disjI1)
next
assume 4: q have r using 1 4 by (rule mp)
thus "p ∨ r" by (rule disjI2)
qed
qed
(* benber *)
lemma ejercicio_28_1:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof
assume "p ∨ q"
moreover have "p ⟹ p ∨ r" by (rule disjI1)
moreover have "q ⟹ p ∨ r"
proof (rule disjI2)
assume "q"
with `q ⟶ r` show "r" by (rule mp)
qed
ultimately show "p ∨ r" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_29:
assumes 1: "p ∨ p"
shows "p"
using 1 proof (rule disjE)
assume "p" thus "p" .
next
assume "p" thus "p" .
qed
(* benber *)
lemma ejercicio_29_1:
assumes "p ∨ p"
shows "p"
using assms by (rule disjE)
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
(* pabalagon benber *)
lemma ejercicio_30:
assumes "p"
shows "p ∨ p"
using assms(1) by (rule disjI1)
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_31:
assumes 1: "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r" (is "?R")
using 1 proof (rule disjE)
assume "p" hence "p ∨ q" by (rule disjI1)
thus ?R by (rule disjI1)
next
assume "q ∨ r" thus ?R
proof (rule disjE)
assume "q" hence "p ∨ q" by (rule disjI2)
thus "(p ∨ q) ∨ r" by (rule disjI1)
next
assume "r" thus ?thesis by (rule disjI2)
qed
qed
(* benber *)
lemma ejercicio_31_1:
assumes "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
proof -
have "p ∨ (q ∨ r)" using assms .
moreover {
assume "p"
hence "p ∨ q" by (rule disjI1)
hence "(p ∨ q) ∨ r" by (rule disjI1)
}
moreover {
assume "q ∨ r"
moreover {
assume "q"
hence "p ∨ q" by (rule disjI2)
hence "(p ∨ q) ∨ r" by (rule disjI1)
}
moreover {
assume "r"
hence "(p ∨ q) ∨ r" by (rule disjI2)
}
ultimately have "(p ∨ q) ∨ r" by (rule disjE)
}
ultimately show "(p ∨ q) ∨ r" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_32:
assumes 1: "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
using 1 proof (rule disjE)
assume "p ∨ q" thus ?thesis
proof (rule disjE)
assume p thus ?thesis by (rule disjI1)
next
assume q hence "q ∨ r" by (rule disjI1)
thus ?thesis by (rule disjI2)
qed
next
assume r hence "q ∨ r" by (rule disjI2)
thus ?thesis by (rule disjI2)
qed
(* benber *)
lemma ejercicio_32_1:
assumes "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
proof -
have "(p ∨ q) ∨ r" using assms .
moreover {
assume "p ∨ q"
moreover {
assume "p"
hence ?thesis by (rule disjI1)
}
moreover {
assume "q"
hence "q ∨ r" by (rule disjI1)
hence ?thesis by (rule disjI2)
}
ultimately have ?thesis by (rule disjE)
}
moreover {
assume "r"
hence "q ∨ r" by (rule disjI2)
hence ?thesis by (rule disjI2)
}
ultimately show ?thesis by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_33:
assumes 1: "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof -
have 2: p using 1 by (rule conjunct1)
show ?thesis
proof (rule disjE)
assume 3: q have "p ∧ q" using 2 3 by (rule conjI)
thus ?thesis by (rule disjI1)
next
assume 4: r have "p ∧ r" using 2 4 by (rule conjI)
thus ?thesis by (rule disjI2)
next
show "q ∨ r" using 1 by (rule conjunct2)
qed
qed
(* benber *)
lemma ejercicio_33_1:
assumes "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof -
have "p" using assms by (rule conjunct1)
have "q ∨ r" using assms by (rule conjunct2)
moreover {
assume "q"
with `p` have "p ∧ q" by (rule conjI)
hence ?thesis by (rule disjI1)
}
moreover {
assume "r"
with `p` have "p ∧ r" by (rule conjI)
hence ?thesis by (rule disjI2)
}
ultimately show ?thesis by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_34:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
using assms(1) proof (rule disjE)
assume 2: "p ∧ q" hence q by (rule conjunct2)
hence 3: "q ∨ r" by (rule disjI1)
have p using 2 by (rule conjunct1)
thus ?thesis using 3 by (rule conjI)
next
assume 4: "p ∧ r" hence r by (rule conjunct2)
hence 5: "q ∨ r" by (rule disjI2)
have p using 4 by (rule conjunct1)
thus ?thesis using 5 by (rule conjI)
qed
(* benber *)
lemma ejercicio_34_1:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
proof -
have "(p ∧ q) ∨ (p ∧ r)" using assms .
moreover {
assume "p ∧ q"
hence "p" by (rule conjunct1)
moreover {
have "q" using `p ∧ q` by (rule conjunct2)
hence "q ∨ r" by (rule disjI1)
}
ultimately have ?thesis by (rule conjI)
}
moreover {
assume "p ∧ r"
hence "p" by (rule conjunct1)
moreover {
have "r" using `p ∧ r` by (rule conjunct2)
hence "q ∨ r" by (rule disjI2)
}
ultimately have ?thesis by (rule conjI)
}
ultimately show ?thesis by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_35:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
using assms(1) proof (rule disjE)
assume 1: p hence 2: "p ∨ r" by (rule disjI1)
have "p ∨ q" using 1 by (rule disjI1)
thus ?thesis using 2 by (rule conjI)
next
assume 3: "q ∧ r" hence r by (rule conjunct2)
hence 4: "p ∨ r" by (rule disjI2)
have q using 3 by (rule conjunct1)
hence "p ∨ q" by (rule disjI2)
thus ?thesis using 4 by (rule conjI)
qed
(* benber *)
lemma ejercicio_35_1:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
proof -
have "p ∨ (q ∧ r)" using assms .
moreover {
assume "p"
hence "p ∨ q" by (rule disjI1)
moreover have "p ∨ r" using `p` by (rule disjI1)
ultimately have ?thesis by (rule conjI)
}
moreover {
assume "q ∧ r"
{
have "q" using `q ∧ r` by (rule conjunct1)
hence "p ∨ q" by (rule disjI2)
}
moreover {
have "r" using `q ∧ r` by (rule conjunct2)
hence "p ∨ r" by (rule disjI2)
}
ultimately have ?thesis by (rule conjI)
}
ultimately show ?thesis by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_36:
assumes 1: "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof -
have 2: "p ∨ q" using 1 by (rule conjunct1)
have 3: "p ∨ r" using 1 by (rule conjunct2)
show ?thesis using 2
proof (rule disjE)
assume p thus ?thesis by (rule disjI1)
next
assume 4: q show ?thesis using 3
proof (rule disjE)
assume p thus ?thesis by (rule disjI1)
next
assume 5: r have "q ∧ r" using 4 5 by (rule conjI)
thus ?thesis by (rule disjI2)
qed
qed
qed
(* benber *)
lemma ejercicio_36_1:
assumes "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof -
have "p ∨ q" using assms by (rule conjunct1)
moreover {
assume "p"
hence ?thesis by (rule disjI1)
}
moreover {
assume "q"
have "p ∨ r" using assms by (rule conjunct2)
moreover {
assume "p"
hence ?thesis by (rule disjI1)
}
moreover {
assume "r"
with `q` have "q ∧ r" by (rule conjI)
hence ?thesis by (rule disjI2)
}
ultimately have ?thesis by (rule disjE)
}
ultimately show ?thesis by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_37:
assumes 1: "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof (rule impI)
have 2: "p ⟶ r" using 1 by (rule conjunct1)
have 3: "q ⟶ r" using 1 by (rule conjunct2)
assume 4: "p ∨ q" show "r" using 4
proof (rule disjE)
assume 5: "p" show "r" using 2 5 by (rule mp)
next
assume 6: "q" show "r" using 3 6 by (rule mp)
qed
qed
(* benber *)
lemma ejercicio_37_1:
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof
assume "p ∨ q"
moreover {
have "p ⟶ r" using assms by (rule conjunct1)
moreover assume "p"
ultimately have "r" by (rule mp)
}
moreover {
have "q ⟶ r" using assms by (rule conjunct2)
moreover assume "q"
ultimately have "r" by (rule mp)
}
ultimately show "r" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_38:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof (rule conjI)
show "p ⟶ r"
proof (rule impI)
assume "p" hence 1: "p ∨ q" by (rule disjI1)
show "r" using assms(1) 1 by (rule mp)
qed
next
show "q ⟶ r"
proof (rule impI)
assume q hence 2: "p ∨ q" by (rule disjI2)
show r using assms(1) 2 by (rule mp)
qed
qed
(* benber *)
lemma ejercicio_38_1:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof
show "p ⟶ r"
proof
assume "p"
hence "p ∨ q" by (rule disjI1)
with assms show "r" by (rule mp)
qed
next
show "q ⟶ r"
proof
assume "q"
hence "p ∨ q" by (rule disjI2)
with assms show "r" by (rule mp)
qed
qed
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
(* pabalagon benber *)
lemma ejercicio_39:
assumes "p"
shows "¬¬p"
using assms(1) by (rule notnotI)
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_40:
assumes 1: "¬p"
shows "p ⟶ q"
proof (rule impI)
assume 2: p show q using 1 2 by (rule notE)
qed
(* benber *)
lemma ejercicio_40_1:
assumes "¬p"
shows "p ⟶ q"
proof
assume "p"
with `¬p` show "q" by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_41:
assumes 1: "p ⟶ q"
shows "¬q ⟶ ¬p"
proof (rule impI)
assume 2: "¬q" show "¬p" using 1 2 by (rule mt)
qed
(* benber *)
lemma ejercicio_41_1:
assumes "p ⟶ q"
shows "¬q ⟶ ¬p"
proof
assume "¬q"
with `p ⟶ q` show "¬p" by (rule mt)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_42:
assumes "p∨q"
"¬q"
shows "p"
using assms(1) proof (rule disjE)
assume "p" thus "p" .
next
assume 2: "q" show "p" using assms(2) 2 by (rule notE)
qed
(* benber *)
lemma ejercicio_42_1:
assumes "p∨q"
"¬q"
shows "p"
proof -
note `p ∨ q`
moreover have "p ⟹ p" .
moreover {
assume "q"
with `¬q` have "p" by (rule notE)
}
ultimately show "p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_43:
assumes "p ∨ q"
"¬p"
shows "q"
using assms(1) proof (rule disjE)
assume 1: "p" show "q" using assms(2) 1 by (rule notE)
next
assume "q" thus "q" .
qed
(* benber *)
lemma ejercicio_43_1:
assumes "p ∨ q"
"¬p"
shows "q"
proof -
note `p ∨ q`
moreover {
assume "p"
with `¬p` have "q" by (rule notE)
}
moreover have "q ⟹ q" .
ultimately show "q" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_44:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
proof (rule notI)
assume 1: "¬p ∧ ¬q" hence 2: "¬p" by (rule conjunct1)
have 3: "¬q" using 1 by (rule conjunct2)
show "False"
using assms(1) proof (rule disjE)
assume 4: "p" show ?thesis using 2 4 by (rule notE)
next
assume 5: "q" show ?thesis using 3 5 by (rule notE)
qed
qed
(* benber *)
lemma ejercicio_44_1:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
proof
assume "¬p ∧ ¬q"
note `p ∨ q`
moreover {
from `¬p ∧ ¬q` have "¬p" by (rule conjunct1)
moreover assume "p"
ultimately have "False" by (rule notE)
}
moreover {
from `¬p ∧ ¬q` have "¬q" by (rule conjunct2)
moreover assume "q"
ultimately have "False" by (rule notE)
}
ultimately show "False" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_45:
assumes 1: "p ∧ q"
shows "¬(¬p ∨ ¬q)"
proof (rule notI)
assume 2: "¬p ∨ ¬q" have 3: "p" using 1 by (rule conjunct1)
have 4: "q" using 1 by (rule conjunct2)
show "False" using 2
proof (rule disjE)
assume "¬p" thus ?thesis using 3 by (rule notE)
next
assume "¬q" thus ?thesis using 4 by (rule notE)
qed
qed
(* benber *)
lemma ejercicio_45_1:
assumes "p ∧ q"
shows "¬(¬p ∨ ¬q)"
proof
assume "¬p ∨ ¬q"
moreover {
assume "¬p"
moreover have "p" using `p ∧ q` by (rule conjunct1)
ultimately have "False" by (rule notE)
}
moreover {
assume "¬q"
moreover have "q" using `p ∧ q` by (rule conjunct2)
ultimately have "False" by (rule notE)
}
ultimately show False by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_46:
assumes 1: "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof (rule conjI)
show "¬p"
proof (rule notI)
assume p hence 2: "p ∨ q" by (rule disjI1)
show False using 1 2 by (rule notE)
qed
show "¬q"
proof (rule notI)
assume q hence 3: "p ∨ q" by (rule disjI2)
show False using 1 3 by (rule notE)
qed
qed
(* benber *)
lemma ejercicio_46_1:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof
show "¬p"
proof (rule ccontr)
assume "¬¬p"
hence "p" by (rule notnotD)
hence "p ∨ q" by (rule disjI1)
with assms show "False" by (rule notE)
qed
next
show "¬q"
proof (rule ccontr)
assume "¬¬q"
hence "q" by (rule notnotD)
hence "p ∨ q" by (rule disjI2)
with assms show "False" by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_47:
assumes 1: "¬p ∧ ¬q"
shows "¬(p ∨ q)"
proof (rule notI)
have 2: "¬p" using 1 by (rule conjunct1)
have 3: "¬q" using 1 by (rule conjunct2)
assume 4: "p ∨ q"
show False
using 4 proof (rule disjE)
assume 5: p show ?thesis using 2 5 by (rule notE)
next
assume 6: q show ?thesis using 3 6 by (rule notE)
qed
qed
(* benber *)
lemma ejercicio_47_1:
assumes "¬p ∧ ¬q"
shows "¬(p ∨ q)"
proof
assume "p ∨ q"
hence "¬(¬p ∧ ¬q)" by (rule ejercicio_44_1)
thus "False" using assms by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_48:
assumes 1: "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof (rule notI)
assume 2: "p ∧ q" hence 3: p by (rule conjunct1)
have 4: q using 2 by (rule conjunct2)
show False
using 1 proof (rule disjE)
assume "¬p" thus ?thesis using 3 by (rule notE)
next
assume "¬q" thus ?thesis using 4 by (rule notE)
qed
qed
(* benber *)
lemma ejercicio_48_1:
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof
assume "p ∧ q"
hence "¬(¬p ∨ ¬q)" by (rule ejercicio_45_1)
thus "False" using assms by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_49:
"¬(p ∧ ¬p)"
proof (rule notI)
assume 1: "p ∧ ¬p" hence 2: p by (rule conjunct1)
have "¬p" using 1 by (rule conjunct2)
thus "False" using 2 by (rule notE)
qed
(* benber *)
lemma ejercicio_49_1:
"¬(p ∧ ¬p)"
proof
assume "p ∧ ¬p"
hence "¬p" by (rule conjunct2)
moreover have "p" using `p ∧ ¬p` by (rule conjunct1)
ultimately show "False" by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_50:
assumes 1: "p ∧ ¬p"
shows "q"
proof (rule notE)
show p using 1 by (rule conjunct1)
show "¬p" using 1 by (rule conjunct2)
qed
(* benber *)
lemma ejercicio_50_1:
assumes "p ∧ ¬p"
shows "q"
proof -
have "¬p" using `p ∧ ¬p` by (rule conjunct2)
moreover have "p" using `p ∧ ¬p` by (rule conjunct1)
ultimately show "q" by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
(* pabalagon benber *)
lemma ejercicio_51:
assumes "¬¬p"
shows "p"
using assms(1) by (rule notnotD)
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_52:
"p ∨ ¬p"
proof (rule ccontr)
assume 1: "¬(p ∨ ¬p)"
have 2: "¬p" proof (rule notI)
assume p hence 3: "p ∨ ¬p" by (rule disjI1)
show "False" using 1 3 by (rule notE)
qed
have 4: "p ∨ ¬p" using 2 by (rule disjI2)
show "False" using 1 4 by (rule notE)
qed
(* benber *)
lemma ejercicio_52_1:
"p ∨ ¬p"
proof (rule ccontr)
assume "¬ (p ∨ ¬ p)"
hence "¬p ∧ ¬¬p" by (rule ejercicio_46_1)
hence "¬p" by (rule conjunct1)
moreover {
have "¬¬p" using `¬p ∧ ¬¬p` by (rule conjunct2)
hence "p" by (rule notnotD)
}
ultimately show "False" by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_53:
"((p ⟶ q) ⟶ p) ⟶ p"
proof (rule impI)
assume 1: "(p ⟶ q) ⟶ p"
show p proof (rule ccontr)
assume 2: "¬p"
have 3: "¬(p ⟶ q)" using 1 2 by (rule mt)
have 4: "p ⟶ q" proof (rule impI)
assume 5: p show q using 2 5 by (rule notE)
qed
show False using 3 4 by (rule notE)
qed
qed
(* benber *)
lemma ejercicio_53_1:
"((p ⟶ q) ⟶ p) ⟶ p"
proof
assume "(p ⟶ q) ⟶ p"
have "p ∨ ¬p" by (rule ejercicio_52_1)
moreover have "p ⟹ p" .
moreover {
assume "¬ p"
hence "p ⟶ q" by (rule ejercicio_40_1)
with `(p ⟶ q) ⟶ p` have "p" by (rule mp)
}
ultimately show "p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_54:
assumes 1: "¬q ⟶ ¬p"
shows "p ⟶ q"
proof (rule impI)
assume 2: "p" hence 3: "¬¬p" by (rule notnotI)
have "¬¬q" using 1 3 by (rule mt)
thus "q" by (rule notnotD)
qed
(* benber *)
lemma ejercicio_54_1:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof
assume "p"
hence "¬¬p" by (rule notnotI)
with assms have "¬¬q" by (rule mt)
thus "q" by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_55:
assumes 1: "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof (rule ccontr)
assume 2: "¬(p ∨ q)"
have 3: "p"
proof (rule ccontr)
assume 4: "¬p"
have 5: "q"
proof (rule ccontr)
assume 6: "¬q" have 7: "¬p ∧ ¬q" using 4 6 by (rule conjI)
show False using 1 7 by (rule notE)
qed
have 8: "p ∨ q" using 5 by (rule disjI2)
show False using 2 8 by (rule notE)
qed
have 9: "p ∨ q" using 3 by (rule disjI1)
show False using 2 9 by (rule notE)
qed
(* benber *)
lemma ejercicio_55_1:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof (rule ccontr)
assume "¬(p ∨ q)"
hence "¬p ∧ ¬q" by (rule ejercicio_46_1)
with assms show False by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_56:
assumes 1: "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof (rule conjI)
show 3: p
proof (rule ccontr)
assume "¬p" hence 4: "¬p ∨ ¬q" by (rule disjI1)
show False using 1 4 by (rule notE)
qed
show 5: q
proof (rule ccontr)
assume "¬q" hence 6: "¬p ∨ ¬q" by (rule disjI2)
show False using 1 6 by (rule notE)
qed
qed
(* benber *)
lemma ejercicio_56_1:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof -
have "¬¬p ∧ ¬¬q" using assms by (rule ejercicio_46_1)
hence "¬¬p" by (rule conjunct1)
hence "p" by (rule notnotD)
moreover {
have "¬¬q" using `¬¬p ∧ ¬¬q` by (rule conjunct2)
hence "q" by (rule notnotD)
}
ultimately show "p ∧ q" by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_57:
assumes 1: "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof (rule ccontr)
assume 2: "¬(¬p ∨ ¬q)"
show False using 1
proof (rule notE)
show 3: "p ∧ q"
proof (rule conjI)
show p
proof (rule ccontr)
assume "¬p" hence 4: "¬p ∨ ¬q" by (rule disjI1)
show False using 2 4 by (rule notE)
qed
next
show q
proof (rule ccontr)
assume "¬q" hence 5: "¬p ∨ ¬q" by (rule disjI2)
show False using 2 5 by (rule notE)
qed
qed
qed
qed
(* benber *)
lemma ejercicio_57_1:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof (rule ccontr)
assume "¬(¬p ∨ ¬q)"
hence "p ∧ q" by (rule ejercicio_56_1)
with assms show "False" by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_58:
"(p ⟶ q) ∨ (q ⟶ p)"
proof -
have "(p ⟶ q) ∨ ¬(p ⟶ q)" proof (rule ccontr)
assume 1: "¬((p ⟶ q) ∨ ¬(p ⟶ q))"
have 2: "¬(p ⟶ q)" proof (rule notI)
assume "p ⟶ q"
hence 3: "(p ⟶ q) ∨ ¬(p ⟶ q)" by (rule disjI1)
show False using 1 3 by (rule notE)
qed
hence 4: "(p ⟶ q) ∨ ¬(p ⟶ q)" by (rule disjI2)
show "False" using 1 4 by (rule notE)
qed
thus ?thesis proof (rule disjE)
assume "p ⟶ q" thus ?thesis by (rule disjI1)
next
assume 1: "¬(p ⟶ q)"
have "q ⟶ p" proof (rule impI)
assume 2: q
have 3: "p ⟶ q" proof (rule impI)
assume p show q using 2 .
qed
show p using 1 3 by (rule notE)
qed
thus ?thesis by (rule disjI2)
qed
qed
(* pabalagon *)
lemma ejercicio_58_2:
"(p ⟶ q) ∨ (q ⟶ p)"
proof (rule ccontr)
assume 1: "¬((p ⟶ q) ∨ (q ⟶ p))"
hence 1: "(p ∧ ¬q) ∧ (q ∧ ¬p)" by simp
hence "p ∧ ¬q" ..
hence 2: p ..
have "q ∧ ¬p" using 1 ..
hence 3: "¬p" ..
show False using 3 2 by (rule notE)
qed
(* benber *)
lemma ejercicio_58_1:
"(p ⟶ q) ∨ (q ⟶ p)"
proof (rule ccontr)
assume "¬ ((p ⟶ q) ∨ (q ⟶ p))"
hence 1: "¬(p ⟶ q) ∧ ¬(q ⟶ p)" by (rule ejercicio_46_1)
have "p ∨ ¬p" by (rule ejercicio_52_1)
moreover {
assume "p"
hence "q ⟶ p" by (rule ejercicio_7_1)
have "¬(q ⟶ p)" using 1 by (rule conjunct2)
hence "False" using `q ⟶ p` by (rule notE)
}
moreover {
assume "¬p"
hence "p ⟶ q" by (rule ejercicio_40_1)
have "¬(p ⟶ q)" using 1 by (rule conjunct1)
hence "False" using `p ⟶ q` by (rule notE)
}
ultimately show "False" by (rule disjE)
moreover {
assume "p"
hence "q ⟶ p" by (rule ejercicio_7_1)
have "¬(q ⟶ p)" using 1 by (rule conjunct2)
hence "False" using `q ⟶ p` by (rule notE)
}
qed
end