Diferencia entre revisiones de «Relación 6»
De Razonamiento automático (2018-19)
Línea 793: | Línea 793: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_25: | lemma ejercicio_25: | ||
assumes "p" | assumes "p" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | using assms(1) by (rule disjI1) | |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 803: | Línea 804: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_26: | lemma ejercicio_26: | ||
assumes "q" | assumes "q" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | using assms(1) by (rule disjI2) | |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 813: | Línea 815: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_27: | lemma ejercicio_27: | ||
− | assumes "p ∨ q" | + | assumes 1: "p ∨ q" |
shows "q ∨ p" | shows "q ∨ p" | ||
− | + | using 1 proof (rule disjE) | |
+ | assume 2: "p" thus "q ∨ p" by (rule disjI2) | ||
+ | next | ||
+ | assume 3: "q" thus "q ∨ p" by (rule disjI1) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 823: | Línea 830: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_28: | lemma ejercicio_28: | ||
− | assumes "q ⟶ r" | + | assumes 1: "q ⟶ r" |
shows "p ∨ q ⟶ p ∨ r" | shows "p ∨ q ⟶ p ∨ r" | ||
− | + | proof (rule impI) | |
+ | assume 2: "p ∨ q" show "p ∨ r" using 2 | ||
+ | proof (rule disjE) | ||
+ | assume 3: p thus "p ∨ r" by (rule disjI1) | ||
+ | next | ||
+ | assume 4: q have r using 1 4 by (rule mp) | ||
+ | thus "p ∨ r" by (rule disjI2) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 833: | Línea 849: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_29: | lemma ejercicio_29: | ||
− | assumes "p ∨ p" | + | assumes 1: "p ∨ p" |
shows "p" | shows "p" | ||
− | + | using 1 proof (rule disjE) | |
+ | assume "p" thus "p" . | ||
+ | next | ||
+ | assume "p" thus "p" . | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 843: | Línea 864: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_30: | lemma ejercicio_30: | ||
− | assumes "p" | + | assumes "p" |
shows "p ∨ p" | shows "p ∨ p" | ||
− | + | using assms(1) by (rule disjI1) | |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 853: | Línea 875: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_31: | lemma ejercicio_31: | ||
− | assumes "p ∨ (q ∨ r)" | + | assumes 1: "p ∨ (q ∨ r)" |
− | shows "(p ∨ q) ∨ r" | + | shows "(p ∨ q) ∨ r" (is "?R") |
− | + | using 1 proof (rule disjE) | |
+ | assume "p" hence "p ∨ q" by (rule disjI1) | ||
+ | thus ?R by (rule disjI1) | ||
+ | next | ||
+ | assume "q ∨ r" thus ?R | ||
+ | proof (rule disjE) | ||
+ | assume "q" hence "p ∨ q" by (rule disjI2) | ||
+ | thus "(p ∨ q) ∨ r" by (rule disjI1) | ||
+ | next | ||
+ | assume "r" thus ?thesis by (rule disjI2) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 863: | Línea 897: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_32: | lemma ejercicio_32: | ||
− | assumes "(p ∨ q) ∨ r" | + | assumes 1: "(p ∨ q) ∨ r" |
shows "p ∨ (q ∨ r)" | shows "p ∨ (q ∨ r)" | ||
− | + | using 1 proof (rule disjE) | |
+ | assume "p ∨ q" thus ?thesis | ||
+ | proof (rule disjE) | ||
+ | assume p thus ?thesis by (rule disjI1) | ||
+ | next | ||
+ | assume q hence "q ∨ r" by (rule disjI1) | ||
+ | thus ?thesis by (rule disjI2) | ||
+ | qed | ||
+ | next | ||
+ | assume r hence "q ∨ r" by (rule disjI2) | ||
+ | thus ?thesis by (rule disjI2) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 873: | Línea 919: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_33: | lemma ejercicio_33: | ||
− | assumes "p ∧ (q ∨ r)" | + | assumes 1: "p ∧ (q ∨ r)" |
shows "(p ∧ q) ∨ (p ∧ r)" | shows "(p ∧ q) ∨ (p ∧ r)" | ||
− | + | proof - | |
+ | have 2: p using 1 by (rule conjunct1) | ||
+ | show ?thesis | ||
+ | proof (rule disjE) | ||
+ | assume 3: q have "p ∧ q" using 2 3 by (rule conjI) | ||
+ | thus ?thesis by (rule disjI1) | ||
+ | next | ||
+ | assume 4: r have "p ∧ r" using 2 4 by (rule conjI) | ||
+ | thus ?thesis by (rule disjI2) | ||
+ | next | ||
+ | show "q ∨ r" using 1 by (rule conjunct2) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 883: | Línea 942: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_34: | lemma ejercicio_34: | ||
assumes "(p ∧ q) ∨ (p ∧ r)" | assumes "(p ∧ q) ∨ (p ∧ r)" | ||
shows "p ∧ (q ∨ r)" | shows "p ∧ (q ∨ r)" | ||
− | + | using assms(1) proof (rule disjE) | |
+ | assume 2: "p ∧ q" hence q by (rule conjunct2) | ||
+ | hence 3: "q ∨ r" by (rule disjI1) | ||
+ | have p using 2 by (rule conjunct1) | ||
+ | thus ?thesis using 3 by (rule conjI) | ||
+ | next | ||
+ | assume 4: "p ∧ r" hence r by (rule conjunct2) | ||
+ | hence 5: "q ∨ r" by (rule disjI2) | ||
+ | have p using 4 by (rule conjunct1) | ||
+ | thus ?thesis using 5 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 893: | Línea 963: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_35: | lemma ejercicio_35: | ||
assumes "p ∨ (q ∧ r)" | assumes "p ∨ (q ∧ r)" | ||
shows "(p ∨ q) ∧ (p ∨ r)" | shows "(p ∨ q) ∧ (p ∨ r)" | ||
− | + | using assms(1) proof (rule disjE) | |
+ | assume 1: p hence 2: "p ∨ r" by (rule disjI1) | ||
+ | have "p ∨ q" using 1 by (rule disjI1) | ||
+ | thus ?thesis using 2 by (rule conjI) | ||
+ | next | ||
+ | assume 3: "q ∧ r" hence r by (rule conjunct2) | ||
+ | hence 4: "p ∨ r" by (rule disjI2) | ||
+ | have q using 3 by (rule conjunct1) | ||
+ | hence "p ∨ q" by (rule disjI2) | ||
+ | thus ?thesis using 4 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 903: | Línea 984: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_36: | lemma ejercicio_36: | ||
− | assumes "(p ∨ q) ∧ (p ∨ r)" | + | assumes 1: "(p ∨ q) ∧ (p ∨ r)" |
shows "p ∨ (q ∧ r)" | shows "p ∨ (q ∧ r)" | ||
− | + | proof - | |
+ | have 2: "p ∨ q" using 1 by (rule conjunct1) | ||
+ | have 3: "p ∨ r" using 1 by (rule conjunct2) | ||
+ | show ?thesis using 2 | ||
+ | proof (rule disjE) | ||
+ | assume p thus ?thesis by (rule disjI1) | ||
+ | next | ||
+ | assume 4: q show ?thesis using 3 | ||
+ | proof (rule disjE) | ||
+ | assume p thus ?thesis by (rule disjI1) | ||
+ | next | ||
+ | assume 5: r have "q ∧ r" using 4 5 by (rule conjI) | ||
+ | thus ?thesis by (rule disjI2) | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 913: | Línea 1010: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_37: | lemma ejercicio_37: | ||
− | assumes "(p ⟶ r) ∧ (q ⟶ r)" | + | assumes 1: "(p ⟶ r) ∧ (q ⟶ r)" |
shows "p ∨ q ⟶ r" | shows "p ∨ q ⟶ r" | ||
− | + | proof (rule impI) | |
+ | have 2: "p ⟶ r" using 1 by (rule conjunct1) | ||
+ | have 3: "q ⟶ r" using 1 by (rule conjunct2) | ||
+ | assume 4: "p ∨ q" show "r" using 4 | ||
+ | proof (rule disjE) | ||
+ | assume 5: "p" show "r" using 2 5 by (rule mp) | ||
+ | next | ||
+ | assume 6: "q" show "r" using 3 6 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 923: | Línea 1030: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_38: | lemma ejercicio_38: | ||
assumes "p ∨ q ⟶ r" | assumes "p ∨ q ⟶ r" | ||
shows "(p ⟶ r) ∧ (q ⟶ r)" | shows "(p ⟶ r) ∧ (q ⟶ r)" | ||
− | + | proof (rule conjI) | |
+ | show "p ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume "p" hence 1: "p ∨ q" by (rule disjI1) | ||
+ | show "r" using assms(1) 1 by (rule mp) | ||
+ | qed | ||
+ | next | ||
+ | show "q ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume q hence 2: "p ∨ q" by (rule disjI2) | ||
+ | show r using assms(1) 2 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
section {* Negaciones *} | section {* Negaciones *} | ||
Línea 935: | Línea 1055: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_39: | lemma ejercicio_39: | ||
assumes "p" | assumes "p" | ||
shows "¬¬p" | shows "¬¬p" | ||
− | + | using assms(1) by (rule notnotI) | |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 945: | Línea 1066: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_40: | lemma ejercicio_40: | ||
− | assumes "¬p" | + | assumes 1: "¬p" |
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | proof (rule impI) | |
+ | assume 2: p show q using 1 2 by (rule notE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 955: | Línea 1079: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_41: | lemma ejercicio_41: | ||
− | assumes "p ⟶ q" | + | assumes 1: "p ⟶ q" |
shows "¬q ⟶ ¬p" | shows "¬q ⟶ ¬p" | ||
− | + | proof (rule impI) | |
+ | assume 2: "¬q" show "¬p" using 1 2 by (rule mt) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 965: | Línea 1092: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_42: | lemma ejercicio_42: | ||
assumes "p∨q" | assumes "p∨q" | ||
"¬q" | "¬q" | ||
shows "p" | shows "p" | ||
− | + | using assms(1) proof (rule disjE) | |
+ | assume "p" thus "p" . | ||
+ | next | ||
+ | assume 2: "q" show "p" using assms(2) 2 by (rule notE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 976: | Línea 1108: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_43: | lemma ejercicio_43: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
"¬p" | "¬p" | ||
shows "q" | shows "q" | ||
− | + | using assms(1) proof (rule disjE) | |
+ | assume 1: "p" show "q" using assms(2) 1 by (rule notE) | ||
+ | next | ||
+ | assume "q" thus "q" . | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 987: | Línea 1124: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_44: | lemma ejercicio_44: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
shows "¬(¬p ∧ ¬q)" | shows "¬(¬p ∧ ¬q)" | ||
− | + | proof (rule notI) | |
+ | assume 1: "¬p ∧ ¬q" hence 2: "¬p" by (rule conjunct1) | ||
+ | have 3: "¬q" using 1 by (rule conjunct2) | ||
+ | show "False" | ||
+ | using assms(1) proof (rule disjE) | ||
+ | assume 4: "p" show ?thesis using 2 4 by (rule notE) | ||
+ | next | ||
+ | assume 5: "q" show ?thesis using 3 5 by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 997: | Línea 1144: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_45: | lemma ejercicio_45: | ||
− | assumes "p ∧ q" | + | assumes 1: "p ∧ q" |
shows "¬(¬p ∨ ¬q)" | shows "¬(¬p ∨ ¬q)" | ||
− | + | proof (rule notI) | |
+ | assume 2: "¬p ∨ ¬q" have 3: "p" using 1 by (rule conjunct1) | ||
+ | have 4: "q" using 1 by (rule conjunct2) | ||
+ | show "False" using 2 | ||
+ | proof (rule disjE) | ||
+ | assume "¬p" thus ?thesis using 3 by (rule notE) | ||
+ | next | ||
+ | assume "¬q" thus ?thesis using 4 by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1007: | Línea 1164: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_46: | lemma ejercicio_46: | ||
− | assumes "¬(p ∨ q)" | + | assumes 1: "¬(p ∨ q)" |
shows "¬p ∧ ¬q" | shows "¬p ∧ ¬q" | ||
− | + | proof (rule conjI) | |
+ | show "¬p" | ||
+ | proof (rule notI) | ||
+ | assume p hence 2: "p ∨ q" by (rule disjI1) | ||
+ | show False using 1 2 by (rule notE) | ||
+ | qed | ||
+ | show "¬q" | ||
+ | proof (rule notI) | ||
+ | assume q hence 3: "p ∨ q" by (rule disjI2) | ||
+ | show False using 1 3 by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1017: | Línea 1186: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_47: | lemma ejercicio_47: | ||
− | assumes "¬p ∧ ¬q" | + | assumes 1: "¬p ∧ ¬q" |
shows "¬(p ∨ q)" | shows "¬(p ∨ q)" | ||
− | + | proof (rule notI) | |
+ | have 2: "¬p" using 1 by (rule conjunct1) | ||
+ | have 3: "¬q" using 1 by (rule conjunct2) | ||
+ | assume 4: "p ∨ q" | ||
+ | show False | ||
+ | using 4 proof (rule disjE) | ||
+ | assume 5: p show ?thesis using 2 5 by (rule notE) | ||
+ | next | ||
+ | assume 6: q show ?thesis using 3 6 by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1027: | Línea 1207: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_48: | lemma ejercicio_48: | ||
− | assumes "¬p ∨ ¬q" | + | assumes 1: "¬p ∨ ¬q" |
shows "¬(p ∧ q)" | shows "¬(p ∧ q)" | ||
− | + | proof (rule notI) | |
+ | assume 2: "p ∧ q" hence 3: p by (rule conjunct1) | ||
+ | have 4: q using 2 by (rule conjunct2) | ||
+ | show False | ||
+ | using 1 proof (rule disjE) | ||
+ | assume "¬p" thus ?thesis using 3 by (rule notE) | ||
+ | next | ||
+ | assume "¬q" thus ?thesis using 4 by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1037: | Línea 1227: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_49: | lemma ejercicio_49: | ||
"¬(p ∧ ¬p)" | "¬(p ∧ ¬p)" | ||
− | + | proof (rule notI) | |
+ | assume 1: "p ∧ ¬p" hence 2: p by (rule conjunct1) | ||
+ | have "¬p" using 1 by (rule conjunct2) | ||
+ | thus "False" using 2 by (rule notE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1046: | Línea 1241: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_50: | lemma ejercicio_50: | ||
− | assumes "p ∧ ¬p" | + | assumes 1: "p ∧ ¬p" |
shows "q" | shows "q" | ||
− | + | proof (rule notE) | |
+ | show p using 1 by (rule conjunct1) | ||
+ | show "¬p" using 1 by (rule conjunct2) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1056: | Línea 1255: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_51: | lemma ejercicio_51: | ||
assumes "¬¬p" | assumes "¬¬p" | ||
shows "p" | shows "p" | ||
− | + | using assms(1) by (rule notnotD) | |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1066: | Línea 1266: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_52: | lemma ejercicio_52: | ||
"p ∨ ¬p" | "p ∨ ¬p" | ||
− | + | proof (rule ccontr) | |
+ | assume 1: "¬(p ∨ ¬p)" | ||
+ | have 2: "¬p" proof (rule notI) | ||
+ | assume p hence 3: "p ∨ ¬p" by (rule disjI1) | ||
+ | show "False" using 1 3 by (rule notE) | ||
+ | qed | ||
+ | have 4: "p ∨ ¬p" using 2 by (rule disjI2) | ||
+ | show "False" using 1 4 by (rule notE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1075: | Línea 1284: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_53: | lemma ejercicio_53: | ||
"((p ⟶ q) ⟶ p) ⟶ p" | "((p ⟶ q) ⟶ p) ⟶ p" | ||
− | + | proof (rule impI) | |
+ | assume 1: "(p ⟶ q) ⟶ p" | ||
+ | show p proof (rule ccontr) | ||
+ | assume 2: "¬p" | ||
+ | have 3: "¬(p ⟶ q)" using 1 2 by (rule mt) | ||
+ | have 4: "p ⟶ q" proof (rule impI) | ||
+ | assume 5: p show q using 2 5 by (rule notE) | ||
+ | qed | ||
+ | show False using 3 4 by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1084: | Línea 1304: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_54: | lemma ejercicio_54: | ||
− | assumes "¬q ⟶ ¬p" | + | assumes 1: "¬q ⟶ ¬p" |
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | proof (rule impI) | |
+ | assume 2: "p" hence 3: "¬¬p" by (rule notnotI) | ||
+ | have "¬¬q" using 1 3 by (rule mt) | ||
+ | thus "q" by (rule notnotD) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1094: | Línea 1319: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_55: | lemma ejercicio_55: | ||
− | assumes "¬(¬p ∧ ¬q)" | + | assumes 1: "¬(¬p ∧ ¬q)" |
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | proof (rule ccontr) | |
+ | assume 2: "¬(p ∨ q)" | ||
+ | have 3: "p" | ||
+ | proof (rule ccontr) | ||
+ | assume 4: "¬p" | ||
+ | have 5: "q" | ||
+ | proof (rule ccontr) | ||
+ | assume 6: "¬q" have 7: "¬p ∧ ¬q" using 4 6 by (rule conjI) | ||
+ | show False using 1 7 by (rule notE) | ||
+ | qed | ||
+ | have 8: "p ∨ q" using 5 by (rule disjI2) | ||
+ | show False using 2 8 by (rule notE) | ||
+ | qed | ||
+ | have 9: "p ∨ q" using 3 by (rule disjI1) | ||
+ | show False using 2 9 by (rule notE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1104: | Línea 1345: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_56: | lemma ejercicio_56: | ||
− | assumes "¬(¬p ∨ ¬q)" | + | assumes 1: "¬(¬p ∨ ¬q)" |
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | proof (rule conjI) | |
+ | show 3: p | ||
+ | proof (rule ccontr) | ||
+ | assume "¬p" hence 4: "¬p ∨ ¬q" by (rule disjI1) | ||
+ | show False using 1 4 by (rule notE) | ||
+ | qed | ||
+ | show 5: q | ||
+ | proof (rule ccontr) | ||
+ | assume "¬q" hence 6: "¬p ∨ ¬q" by (rule disjI2) | ||
+ | show False using 1 6 by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1114: | Línea 1367: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_57: | lemma ejercicio_57: | ||
− | assumes "¬(p ∧ q)" | + | assumes 1: "¬(p ∧ q)" |
shows "¬p ∨ ¬q" | shows "¬p ∨ ¬q" | ||
− | + | proof (rule ccontr) | |
+ | assume 2: "¬(¬p ∨ ¬q)" | ||
+ | show False using 1 | ||
+ | proof (rule notE) | ||
+ | show 3: "p ∧ q" | ||
+ | proof (rule conjI) | ||
+ | show p | ||
+ | proof (rule ccontr) | ||
+ | assume "¬p" hence 4: "¬p ∨ ¬q" by (rule disjI1) | ||
+ | show False using 2 4 by (rule notE) | ||
+ | qed | ||
+ | next | ||
+ | show q | ||
+ | proof (rule ccontr) | ||
+ | assume "¬q" hence 5: "¬p ∨ ¬q" by (rule disjI2) | ||
+ | show False using 2 5 by (rule notE) | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1124: | Línea 1397: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_58: | lemma ejercicio_58: | ||
"(p ⟶ q) ∨ (q ⟶ p)" | "(p ⟶ q) ∨ (q ⟶ p)" | ||
− | + | proof - | |
+ | have "(p ⟶ q) ∨ ¬(p ⟶ q)" proof (rule ccontr) | ||
+ | assume 1: "¬((p ⟶ q) ∨ ¬(p ⟶ q))" | ||
+ | have 2: "¬(p ⟶ q)" proof (rule notI) | ||
+ | assume "p ⟶ q" | ||
+ | hence 3: "(p ⟶ q) ∨ ¬(p ⟶ q)" by (rule disjI1) | ||
+ | show False using 1 3 by (rule notE) | ||
+ | qed | ||
+ | hence 4: "(p ⟶ q) ∨ ¬(p ⟶ q)" by (rule disjI2) | ||
+ | show "False" using 1 4 by (rule notE) | ||
+ | qed | ||
+ | thus ?thesis proof (rule disjE) | ||
+ | assume "p ⟶ q" thus ?thesis by (rule disjI1) | ||
+ | next | ||
+ | assume 1: "¬(p ⟶ q)" | ||
+ | have "q ⟶ p" proof (rule impI) | ||
+ | assume 2: q | ||
+ | have 3: "p ⟶ q" proof (rule impI) | ||
+ | assume p show q using 2 . | ||
+ | qed | ||
+ | show p using 1 3 by (rule notE) | ||
+ | qed | ||
+ | thus ?thesis by (rule disjI2) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | (* pabalagon *) | ||
+ | lemma ejercicio_58_2: | ||
+ | "(p ⟶ q) ∨ (q ⟶ p)" | ||
+ | proof (rule ccontr) | ||
+ | assume 1: "¬((p ⟶ q) ∨ (q ⟶ p))" | ||
+ | hence 1: "(p ∧ ¬q) ∧ (q ∧ ¬p)" by simp | ||
+ | hence "p ∧ ¬q" .. | ||
+ | hence 2: p .. | ||
+ | have "q ∧ ¬p" using 1 .. | ||
+ | hence 3: "¬p" .. | ||
+ | show False using 3 2 by (rule notE) | ||
+ | qed | ||
end | end | ||
</source> | </source> |
Revisión del 18:05 21 ene 2019
chapter {* R6: Deducción natural proposicional *}
theory R6_Deduccion_natural_proposicional
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 cammonagu*)
lemma ejercicio_1:
assumes 1: "p ⟶ q" and
2: "p"
shows "q"
proof -
show "q" using 1 2 by (rule mp)
qed
(* benber *)
lemma ejercicio_1_1:
assumes "p ⟶ q"
"p"
shows "q"
using assms by (rule mp)
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 cammonagu*)
lemma ejercicio_2:
assumes 1: "p ⟶ q" and
2: "q ⟶ r" and
3: "p"
shows "r"
proof -
have 4: "q" using 1 3 by (rule mp)
show "r" using 2 4 by (rule mp)
qed
(* benber *)
lemma ejercicio_2_1:
assumes "p ⟶ q"
"q ⟶ r"
"p"
shows "r"
proof -
have "q" using `p ⟶ q` `p` by (rule mp)
with `q ⟶ r` show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 cammonagu*)
lemma ejercicio_3:
assumes 1: "p ⟶ (q ⟶ r)" and
2: "p ⟶ q" and
3: "p"
shows "r"
proof -
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
(* benber *)
lemma ejercicio_3_1:
assumes "p ⟶ (q ⟶ r)"
"p ⟶ q"
"p"
shows "r"
proof -
have "q ⟶ r" using `p ⟶ (q ⟶ r)` `p` by (rule mp)
moreover have "q" using `p ⟶ q` `p` by (rule mp)
ultimately show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 cammonagu*)
lemma ejercicio_4:
assumes 1: "p ⟶ q" and
2: "q ⟶ r"
shows "p ⟶ r"
proof -
{ assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)}
thus "p ⟶ r" by (rule impI)
qed
(* benber *)
lemma ejercicio_4_1:
assumes "p ⟶ q"
"q ⟶ r"
shows "p ⟶ r"
proof
assume p
with `p ⟶ q` have "q" by (rule mp)
with `q ⟶ r` show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_5:
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
show "r" using 4 2 by (rule mp)
qed
qed
(* benber josgomrom4 *)
lemma ejercicio_5_1:
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof
assume "q"
show "p ⟶ r"
proof
assume "p"
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
thus "r" using `q` by (rule mp)
qed
qed
(* pabalagon *)
lemma ejercicio_5_2:
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{ assume 2: "q"
{ assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "r" using 4 2 by (rule mp)}
hence "p ⟶ r" by (rule impI)
}
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_6:
assumes 1: "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "p ⟶ q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
qed
(* benber josgomrom4 *)
lemma ejercicio_6_1:
assumes "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof
assume "p ⟶ q"
show "p ⟶ r"
proof
assume "p"
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
moreover from `p ⟶ q` `p` have "q" by (rule mp)
ultimately show "r" by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_7:
assumes 1: "p"
shows "q ⟶ p"
proof (rule impI)
assume 2: "q"
show "p" using 1 by this
qed
(* benber *)
lemma ejercicio_7_1:
assumes "p"
shows "q ⟶ p"
proof
show "p" using `p` .
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_8:
"p ⟶ (q ⟶ p)"
proof (rule impI)
assume 1: "p"
show "q ⟶ p"
proof (rule impI)
assume 2: "q"
show "p" using 1 by this
qed
qed
(* benber *)
lemma ejercicio_8_1:
"p ⟶ (q ⟶ p)"
using ejercicio_7_1 by (rule impI)
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_9:
assumes 1: "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "q ⟶ r"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
show "r" using 2 4 by (rule mp)
qed
qed
(* benber josgomrom4 *)
lemma ejercicio_9_1:
assumes "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof
assume "q ⟶ r"
show "p ⟶ r"
proof
assume "p"
with `p ⟶ q` have "q" by (rule mp)
with `q ⟶ r` show "r" by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_10:
assumes 1: "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof (rule impI)
assume 2: "r"
show "q ⟶ (p ⟶ s)"
proof (rule impI)
assume 3: "q"
show "p ⟶ s"
proof (rule impI)
assume 4: "p"
have 5: "q ⟶ (r ⟶ s)" using 1 4 by (rule mp)
have 6: "r ⟶ s" using 5 3 by (rule mp)
show "s" using 6 2 by (rule mp)
qed
qed
qed
(* benber josgomrom4 *)
lemma ejercicio_10_1:
assumes "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof
assume "r"
show "q ⟶ (p ⟶ s)"
proof
assume "q"
show "p ⟶ s"
proof
assume "p"
with `p ⟶ (q ⟶ (r ⟶ s))`
have "q ⟶ (r ⟶ s)" by (rule mp)
hence "r ⟶ s" using `q` by (rule mp)
thus "s" using `r` by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_11:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof (rule impI)
assume 1: "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)" using 1 ejercicio_6 by simp
qed
(* pabalagon *)
lemma ejercicio_11_2:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof (rule impI)
assume 1: "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "p ⟶ q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
qed
qed
(* benber *)
lemma ejercicio_11_1:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof
assume "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)"
proof
assume "p ⟶ q"
show "p ⟶ r"
proof
assume p
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
moreover have "q" using `p ⟶ q` `p` by (rule mp)
ultimately show r by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_12:
assumes 1: "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume 2: "p"
show "q ⟶ r"
proof (rule impI)
assume 3: "q"
have 4: "p ⟶ q"
proof (rule impI)
assume 5: "p"
show "q" using 3 by this
qed
show "r" using 1 4 by (rule mp)
qed
qed
(* benber josgomrom4 *)
lemma ejercicio_12_1:
assumes "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof
assume "p"
show "q ⟶ r"
proof
assume "q"
hence "p ⟶ q" by (rule impI)
with `(p ⟶ q) ⟶ r` show "r" by (rule mp)
qed
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_13:
assumes "p"
"q"
shows "p ∧ q"
using assms(1, 2) by (rule conjI)
(* benber josgomrom4 *)
lemma ejercicio_13_1:
assumes "p"
"q"
shows "p ∧ q"
using assms by (rule conjI)
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_14:
assumes "p ∧ q"
shows "p"
using assms(1) by (rule conjunct1)
(* benber *)
lemma ejercicio_14_1:
assumes "p ∧ q"
shows "p"
using assms by (rule conjunct1)
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_15:
assumes "p ∧ q"
shows "q"
using assms(1) by (rule conjunct2)
(* benber *)
lemma ejercicio_15_1:
assumes "p ∧ q"
shows "q"
using assms by (rule conjunct2)
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_16:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof -
have 1: "p" using assms(1) by (rule conjunct1)
have 2: "q ∧ r" using assms(1) by (rule conjunct2)
have 3: "q" using 2 by (rule conjunct1)
have 4: "r" using 2 by (rule conjunct2)
have 5: "p ∧ q" using 1 3 by (rule conjI)
show "(p ∧ q) ∧ r" using 5 4 by (rule conjI)
qed
(* benber *)
lemma ejercicio_16_1:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof - (* TODO? *)
have "q ∧ r" using assms by (rule conjunct2)
have "p" using assms by (rule conjunct1)
moreover have "q" using `q ∧ r` by (rule conjunct1)
ultimately have "p ∧ q" by (rule conjI)
moreover have "r" using `q ∧ r` by (rule conjunct2)
ultimately show "(p ∧ q) ∧ r" by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_17:
assumes 1: "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof -
have 2: "r" using 1 by (rule conjunct2)
have 3: "p ∧ q" using 1 by (rule conjunct1)
have 4: "p" using 3 by (rule conjunct1)
have 5: "q" using 3 by (rule conjunct2)
have 6: "q ∧ r" using 5 2 by (rule conjI)
show ?thesis using 4 6 by (rule conjI)
qed
(* benber *)
lemma ejercicio_17_1:
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof -
have "p ∧ q" using assms by (rule conjunct1)
have "p" using `p ∧ q` by (rule conjunct1)
moreover have "q ∧ r"
proof (rule conjI)
show "q" using `p ∧ q` by (rule conjunct2)
next
show "r" using assms by (rule conjunct2)
qed
ultimately show ?thesis by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_18:
assumes "p ∧ q"
shows "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using assms(1) by (rule conjunct2)
qed
(* benber josgomrom4 *)
lemma ejercicio_18_1:
assumes "p ∧ q"
shows "p ⟶ q"
proof
show "q" using assms by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_19:
assumes 1: "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof (rule impI)
assume 2: "p"
have 3: "p ⟶ q" using 1 by (rule conjunct1)
have 4: "p ⟶ r" using 1 by (rule conjunct2)
have 5: "q" using 3 2 by (rule mp)
have 6: "r" using 4 2 by (rule mp)
show "q ∧ r" using 5 6 by (rule conjI)
qed
(* benber *)
lemma ejercicio_19_1:
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof
assume p
show "q ∧ r"
proof
have "p ⟶ q" using assms by (rule conjunct1)
thus "q" using `p` by (rule mp)
next
have "p ⟶ r" using assms by (rule conjunct2)
thus "r" using `p` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_20:
assumes 1: "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof (rule conjI)
show "p ⟶ q"
proof (rule impI)
assume 2: "p"
have 3: "q ∧ r" using 1 2 by (rule mp)
show 4: "q" using 3 by (rule conjunct1)
qed
show "p ⟶ r"
proof (rule impI)
assume 2: "p"
have 3: "q ∧ r" using 1 2 by (rule mp)
show 4: "r" using 3 by (rule conjunct2)
qed
qed
(* benber *)
lemma ejercicio_20_1:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof
show "p ⟶ q"
proof
assume "p"
with assms have "q ∧ r" by (rule mp)
thus "q" by (rule conjunct1)
qed
next
show "p ⟶ r"
proof
assume "p"
with assms have "q ∧ r" by (rule mp)
thus "r" by (rule conjunct2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_21:
assumes 1: "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume 2: "p ∧ q"
have 3: "p" using 2 by (rule conjunct1)
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 by (rule conjunct2)
show "r" using 4 5 by (rule mp)
qed
(* benber *)
lemma ejercicio_21_1:
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof
assume "p ∧ q"
hence "p" by (rule conjunct1)
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
moreover from `p ∧ q` have "q" by (rule conjunct2)
ultimately show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_22:
assumes 1: "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume 2: "p"
show "q ⟶ r"
proof (rule impI)
assume 3: "q"
have 4: "p ∧ q" using 2 3 by (rule conjI)
show "r" using 1 4 by (rule mp)
qed
qed
(* benber *)
lemma ejercicio_22_1:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof
assume "p"
show "q ⟶ r"
proof
assume "q"
with `p` have "p ∧ q" by (rule conjI)
with `p ∧ q ⟶ r` show "r" by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_23:
assumes 1: "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume 2: "p ∧ q"
have 3: "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using 2 by (rule conjunct2)
qed
show "r" using 1 3 by (rule mp)
qed
(* benber *)
lemma ejercicio_23_1:
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof
assume "p ∧ q"
hence "q" by (rule conjunct2)
hence "p ⟶ q" by (rule impI)
with `(p ⟶ q) ⟶ r` show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_24:
assumes 1: "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof (rule impI)
assume 2: "p ⟶ q"
have 3: "p" using 1 by (rule conjunct1)
have 4: "q ⟶ r" using 1 by (rule conjunct2)
have 5: "q" using 2 3 by (rule mp)
show 6: "r" using 4 5 by (rule mp)
qed
(* benber *)
lemma ejercicio_24_1:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof
have "q ⟶ r" using assms by (rule conjunct2)
assume "p ⟶ q"
moreover have "p" using assms by (rule conjunct1)
ultimately have "q" by (rule mp)
with `q ⟶ r` show r by (rule mp)
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_25:
assumes "p"
shows "p ∨ q"
using assms(1) by (rule disjI1)
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_26:
assumes "q"
shows "p ∨ q"
using assms(1) by (rule disjI2)
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_27:
assumes 1: "p ∨ q"
shows "q ∨ p"
using 1 proof (rule disjE)
assume 2: "p" thus "q ∨ p" by (rule disjI2)
next
assume 3: "q" thus "q ∨ p" by (rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_28:
assumes 1: "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof (rule impI)
assume 2: "p ∨ q" show "p ∨ r" using 2
proof (rule disjE)
assume 3: p thus "p ∨ r" by (rule disjI1)
next
assume 4: q have r using 1 4 by (rule mp)
thus "p ∨ r" by (rule disjI2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_29:
assumes 1: "p ∨ p"
shows "p"
using 1 proof (rule disjE)
assume "p" thus "p" .
next
assume "p" thus "p" .
qed
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_30:
assumes "p"
shows "p ∨ p"
using assms(1) by (rule disjI1)
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_31:
assumes 1: "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r" (is "?R")
using 1 proof (rule disjE)
assume "p" hence "p ∨ q" by (rule disjI1)
thus ?R by (rule disjI1)
next
assume "q ∨ r" thus ?R
proof (rule disjE)
assume "q" hence "p ∨ q" by (rule disjI2)
thus "(p ∨ q) ∨ r" by (rule disjI1)
next
assume "r" thus ?thesis by (rule disjI2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_32:
assumes 1: "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
using 1 proof (rule disjE)
assume "p ∨ q" thus ?thesis
proof (rule disjE)
assume p thus ?thesis by (rule disjI1)
next
assume q hence "q ∨ r" by (rule disjI1)
thus ?thesis by (rule disjI2)
qed
next
assume r hence "q ∨ r" by (rule disjI2)
thus ?thesis by (rule disjI2)
qed
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_33:
assumes 1: "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof -
have 2: p using 1 by (rule conjunct1)
show ?thesis
proof (rule disjE)
assume 3: q have "p ∧ q" using 2 3 by (rule conjI)
thus ?thesis by (rule disjI1)
next
assume 4: r have "p ∧ r" using 2 4 by (rule conjI)
thus ?thesis by (rule disjI2)
next
show "q ∨ r" using 1 by (rule conjunct2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_34:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
using assms(1) proof (rule disjE)
assume 2: "p ∧ q" hence q by (rule conjunct2)
hence 3: "q ∨ r" by (rule disjI1)
have p using 2 by (rule conjunct1)
thus ?thesis using 3 by (rule conjI)
next
assume 4: "p ∧ r" hence r by (rule conjunct2)
hence 5: "q ∨ r" by (rule disjI2)
have p using 4 by (rule conjunct1)
thus ?thesis using 5 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_35:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
using assms(1) proof (rule disjE)
assume 1: p hence 2: "p ∨ r" by (rule disjI1)
have "p ∨ q" using 1 by (rule disjI1)
thus ?thesis using 2 by (rule conjI)
next
assume 3: "q ∧ r" hence r by (rule conjunct2)
hence 4: "p ∨ r" by (rule disjI2)
have q using 3 by (rule conjunct1)
hence "p ∨ q" by (rule disjI2)
thus ?thesis using 4 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_36:
assumes 1: "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof -
have 2: "p ∨ q" using 1 by (rule conjunct1)
have 3: "p ∨ r" using 1 by (rule conjunct2)
show ?thesis using 2
proof (rule disjE)
assume p thus ?thesis by (rule disjI1)
next
assume 4: q show ?thesis using 3
proof (rule disjE)
assume p thus ?thesis by (rule disjI1)
next
assume 5: r have "q ∧ r" using 4 5 by (rule conjI)
thus ?thesis by (rule disjI2)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_37:
assumes 1: "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof (rule impI)
have 2: "p ⟶ r" using 1 by (rule conjunct1)
have 3: "q ⟶ r" using 1 by (rule conjunct2)
assume 4: "p ∨ q" show "r" using 4
proof (rule disjE)
assume 5: "p" show "r" using 2 5 by (rule mp)
next
assume 6: "q" show "r" using 3 6 by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_38:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof (rule conjI)
show "p ⟶ r"
proof (rule impI)
assume "p" hence 1: "p ∨ q" by (rule disjI1)
show "r" using assms(1) 1 by (rule mp)
qed
next
show "q ⟶ r"
proof (rule impI)
assume q hence 2: "p ∨ q" by (rule disjI2)
show r using assms(1) 2 by (rule mp)
qed
qed
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_39:
assumes "p"
shows "¬¬p"
using assms(1) by (rule notnotI)
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_40:
assumes 1: "¬p"
shows "p ⟶ q"
proof (rule impI)
assume 2: p show q using 1 2 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_41:
assumes 1: "p ⟶ q"
shows "¬q ⟶ ¬p"
proof (rule impI)
assume 2: "¬q" show "¬p" using 1 2 by (rule mt)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_42:
assumes "p∨q"
"¬q"
shows "p"
using assms(1) proof (rule disjE)
assume "p" thus "p" .
next
assume 2: "q" show "p" using assms(2) 2 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_43:
assumes "p ∨ q"
"¬p"
shows "q"
using assms(1) proof (rule disjE)
assume 1: "p" show "q" using assms(2) 1 by (rule notE)
next
assume "q" thus "q" .
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_44:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
proof (rule notI)
assume 1: "¬p ∧ ¬q" hence 2: "¬p" by (rule conjunct1)
have 3: "¬q" using 1 by (rule conjunct2)
show "False"
using assms(1) proof (rule disjE)
assume 4: "p" show ?thesis using 2 4 by (rule notE)
next
assume 5: "q" show ?thesis using 3 5 by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_45:
assumes 1: "p ∧ q"
shows "¬(¬p ∨ ¬q)"
proof (rule notI)
assume 2: "¬p ∨ ¬q" have 3: "p" using 1 by (rule conjunct1)
have 4: "q" using 1 by (rule conjunct2)
show "False" using 2
proof (rule disjE)
assume "¬p" thus ?thesis using 3 by (rule notE)
next
assume "¬q" thus ?thesis using 4 by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_46:
assumes 1: "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof (rule conjI)
show "¬p"
proof (rule notI)
assume p hence 2: "p ∨ q" by (rule disjI1)
show False using 1 2 by (rule notE)
qed
show "¬q"
proof (rule notI)
assume q hence 3: "p ∨ q" by (rule disjI2)
show False using 1 3 by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_47:
assumes 1: "¬p ∧ ¬q"
shows "¬(p ∨ q)"
proof (rule notI)
have 2: "¬p" using 1 by (rule conjunct1)
have 3: "¬q" using 1 by (rule conjunct2)
assume 4: "p ∨ q"
show False
using 4 proof (rule disjE)
assume 5: p show ?thesis using 2 5 by (rule notE)
next
assume 6: q show ?thesis using 3 6 by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_48:
assumes 1: "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof (rule notI)
assume 2: "p ∧ q" hence 3: p by (rule conjunct1)
have 4: q using 2 by (rule conjunct2)
show False
using 1 proof (rule disjE)
assume "¬p" thus ?thesis using 3 by (rule notE)
next
assume "¬q" thus ?thesis using 4 by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_49:
"¬(p ∧ ¬p)"
proof (rule notI)
assume 1: "p ∧ ¬p" hence 2: p by (rule conjunct1)
have "¬p" using 1 by (rule conjunct2)
thus "False" using 2 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_50:
assumes 1: "p ∧ ¬p"
shows "q"
proof (rule notE)
show p using 1 by (rule conjunct1)
show "¬p" using 1 by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_51:
assumes "¬¬p"
shows "p"
using assms(1) by (rule notnotD)
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_52:
"p ∨ ¬p"
proof (rule ccontr)
assume 1: "¬(p ∨ ¬p)"
have 2: "¬p" proof (rule notI)
assume p hence 3: "p ∨ ¬p" by (rule disjI1)
show "False" using 1 3 by (rule notE)
qed
have 4: "p ∨ ¬p" using 2 by (rule disjI2)
show "False" using 1 4 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_53:
"((p ⟶ q) ⟶ p) ⟶ p"
proof (rule impI)
assume 1: "(p ⟶ q) ⟶ p"
show p proof (rule ccontr)
assume 2: "¬p"
have 3: "¬(p ⟶ q)" using 1 2 by (rule mt)
have 4: "p ⟶ q" proof (rule impI)
assume 5: p show q using 2 5 by (rule notE)
qed
show False using 3 4 by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_54:
assumes 1: "¬q ⟶ ¬p"
shows "p ⟶ q"
proof (rule impI)
assume 2: "p" hence 3: "¬¬p" by (rule notnotI)
have "¬¬q" using 1 3 by (rule mt)
thus "q" by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_55:
assumes 1: "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof (rule ccontr)
assume 2: "¬(p ∨ q)"
have 3: "p"
proof (rule ccontr)
assume 4: "¬p"
have 5: "q"
proof (rule ccontr)
assume 6: "¬q" have 7: "¬p ∧ ¬q" using 4 6 by (rule conjI)
show False using 1 7 by (rule notE)
qed
have 8: "p ∨ q" using 5 by (rule disjI2)
show False using 2 8 by (rule notE)
qed
have 9: "p ∨ q" using 3 by (rule disjI1)
show False using 2 9 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_56:
assumes 1: "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof (rule conjI)
show 3: p
proof (rule ccontr)
assume "¬p" hence 4: "¬p ∨ ¬q" by (rule disjI1)
show False using 1 4 by (rule notE)
qed
show 5: q
proof (rule ccontr)
assume "¬q" hence 6: "¬p ∨ ¬q" by (rule disjI2)
show False using 1 6 by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_57:
assumes 1: "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof (rule ccontr)
assume 2: "¬(¬p ∨ ¬q)"
show False using 1
proof (rule notE)
show 3: "p ∧ q"
proof (rule conjI)
show p
proof (rule ccontr)
assume "¬p" hence 4: "¬p ∨ ¬q" by (rule disjI1)
show False using 2 4 by (rule notE)
qed
next
show q
proof (rule ccontr)
assume "¬q" hence 5: "¬p ∨ ¬q" by (rule disjI2)
show False using 2 5 by (rule notE)
qed
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_58:
"(p ⟶ q) ∨ (q ⟶ p)"
proof -
have "(p ⟶ q) ∨ ¬(p ⟶ q)" proof (rule ccontr)
assume 1: "¬((p ⟶ q) ∨ ¬(p ⟶ q))"
have 2: "¬(p ⟶ q)" proof (rule notI)
assume "p ⟶ q"
hence 3: "(p ⟶ q) ∨ ¬(p ⟶ q)" by (rule disjI1)
show False using 1 3 by (rule notE)
qed
hence 4: "(p ⟶ q) ∨ ¬(p ⟶ q)" by (rule disjI2)
show "False" using 1 4 by (rule notE)
qed
thus ?thesis proof (rule disjE)
assume "p ⟶ q" thus ?thesis by (rule disjI1)
next
assume 1: "¬(p ⟶ q)"
have "q ⟶ p" proof (rule impI)
assume 2: q
have 3: "p ⟶ q" proof (rule impI)
assume p show q using 2 .
qed
show p using 1 3 by (rule notE)
qed
thus ?thesis by (rule disjI2)
qed
qed
(* pabalagon *)
lemma ejercicio_58_2:
"(p ⟶ q) ∨ (q ⟶ p)"
proof (rule ccontr)
assume 1: "¬((p ⟶ q) ∨ (q ⟶ p))"
hence 1: "(p ∧ ¬q) ∧ (q ∧ ¬p)" by simp
hence "p ∧ ¬q" ..
hence 2: p ..
have "q ∧ ¬p" using 1 ..
hence 3: "¬p" ..
show False using 3 2 by (rule notE)
qed
end