Diferencia entre revisiones de «Relación 6»
De Razonamiento automático (2018-19)
(Página creada con «<source lang="isabelle"> chapter {* R6: Deducción natural proposicional *} theory R6_Deduccion_natural_proposicional imports Main begin text {* ----------------------…») |
|||
Línea 50: | Línea 50: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_1: | lemma ejercicio_1: | ||
− | assumes "p ⟶ q" | + | assumes 1: "p ⟶ q" and |
− | "p" | + | 2: "p" |
shows "q" | shows "q" | ||
− | + | proof - | |
+ | show "q" using 1 2 by (rule mp) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 61: | Línea 65: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_2: | lemma ejercicio_2: | ||
− | assumes "p ⟶ q" | + | assumes 1: "p ⟶ q" and |
− | "q ⟶ r" | + | 2: "q ⟶ r" and |
− | "p" | + | 3: "p" |
shows "r" | shows "r" | ||
− | + | proof - | |
+ | have 4: "q" using 1 3 by (rule mp) | ||
+ | show "r" using 2 4 by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 73: | Línea 81: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_3: | lemma ejercicio_3: | ||
− | assumes "p ⟶ (q ⟶ r)" | + | assumes 1: "p ⟶ (q ⟶ r)" and |
− | "p ⟶ q" | + | 2: "p ⟶ q" and |
− | "p" | + | 3: "p" |
shows "r" | shows "r" | ||
− | + | proof - | |
+ | have 4: "q ⟶ r" using 1 3 by (rule mp) | ||
+ | have 5: "q" using 2 3 by (rule mp) | ||
+ | show "r" using 4 5 by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 85: | Línea 98: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_4: | lemma ejercicio_4: | ||
− | assumes "p ⟶ q" | + | assumes 1: "p ⟶ q" and |
− | "q ⟶ r" | + | 2: "q ⟶ r" |
shows "p ⟶ r" | shows "p ⟶ r" | ||
− | + | proof - | |
+ | { assume 3: "p" | ||
+ | have 4: "q" using 1 3 by (rule mp) | ||
+ | have 5: "r" using 2 4 by (rule mp)} | ||
+ | thus "p ⟶ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 96: | Línea 115: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_5: | lemma ejercicio_5: | ||
− | assumes "p ⟶ (q ⟶ r)" | + | assumes 1: "p ⟶ (q ⟶ r)" |
+ | shows "q ⟶ (p ⟶ r)" | ||
+ | proof (rule impI) | ||
+ | assume 2: "q" | ||
+ | show "p ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume 3: "p" | ||
+ | have 4: "q ⟶ r" using 1 3 by (rule mp) | ||
+ | show "r" using 4 2 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | (* pabalagon *) | ||
+ | lemma ejercicio_5_2: | ||
+ | assumes 1: "p ⟶ (q ⟶ r)" | ||
shows "q ⟶ (p ⟶ r)" | shows "q ⟶ (p ⟶ r)" | ||
− | + | proof - | |
+ | { assume 2: "q" | ||
+ | { assume 3: "p" | ||
+ | have 4: "q ⟶ r" using 1 3 by (rule mp) | ||
+ | have 5: "r" using 4 2 by (rule mp)} | ||
+ | hence "p ⟶ r" by (rule impI) | ||
+ | } | ||
+ | thus "q ⟶ (p ⟶ r)" by (rule impI) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 106: | Línea 149: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_6: | lemma ejercicio_6: | ||
− | assumes "p ⟶ (q ⟶ r)" | + | assumes 1: "p ⟶ (q ⟶ r)" |
shows "(p ⟶ q) ⟶ (p ⟶ r)" | shows "(p ⟶ q) ⟶ (p ⟶ r)" | ||
− | + | proof (rule impI) | |
+ | assume 2: "p ⟶ q" | ||
+ | show "p ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume 3: "p" | ||
+ | have 4: "q ⟶ r" using 1 3 by (rule mp) | ||
+ | have 5: "q" using 2 3 by (rule mp) | ||
+ | show "r" using 4 5 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 116: | Línea 169: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_7: | lemma ejercicio_7: | ||
− | assumes "p" | + | assumes 1: "p" |
shows "q ⟶ p" | shows "q ⟶ p" | ||
− | + | proof (rule impI) | |
+ | assume 2: "q" | ||
+ | show "p" using 1 by this | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 126: | Línea 183: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_8: | lemma ejercicio_8: | ||
"p ⟶ (q ⟶ p)" | "p ⟶ (q ⟶ p)" | ||
− | + | proof (rule impI) | |
+ | assume 1: "p" | ||
+ | show "q ⟶ p" | ||
+ | proof (rule impI) | ||
+ | assume 2: "q" | ||
+ | show "p" using 1 by this | ||
+ | qed | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 135: | Línea 201: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_9: | lemma ejercicio_9: | ||
− | assumes "p ⟶ q" | + | assumes 1: "p ⟶ q" |
shows "(q ⟶ r) ⟶ (p ⟶ r)" | shows "(q ⟶ r) ⟶ (p ⟶ r)" | ||
− | + | proof (rule impI) | |
+ | assume 2: "q ⟶ r" | ||
+ | show "p ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume 3: "p" | ||
+ | have 4: "q" using 1 3 by (rule mp) | ||
+ | show "r" using 2 4 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 145: | Línea 220: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_10: | lemma ejercicio_10: | ||
− | assumes "p ⟶ (q ⟶ (r ⟶ s))" | + | assumes 1: "p ⟶ (q ⟶ (r ⟶ s))" |
shows "r ⟶ (q ⟶ (p ⟶ s))" | shows "r ⟶ (q ⟶ (p ⟶ s))" | ||
− | + | proof (rule impI) | |
+ | assume 2: "r" | ||
+ | show "q ⟶ (p ⟶ s)" | ||
+ | proof (rule impI) | ||
+ | assume 3: "q" | ||
+ | show "p ⟶ s" | ||
+ | proof (rule impI) | ||
+ | assume 4: "p" | ||
+ | have 5: "q ⟶ (r ⟶ s)" using 1 4 by (rule mp) | ||
+ | have 6: "r ⟶ s" using 5 3 by (rule mp) | ||
+ | show "s" using 6 2 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 155: | Línea 244: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_11: | lemma ejercicio_11: | ||
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
− | + | proof (rule impI) | |
+ | assume 1: "p ⟶ (q ⟶ r)" | ||
+ | show "(p ⟶ q) ⟶ (p ⟶ r)" using 1 ejercicio_6 by simp | ||
+ | qed | ||
+ | |||
+ | (* pabalagon *) | ||
+ | lemma ejercicio_11_2: | ||
+ | "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
+ | proof (rule impI) | ||
+ | assume 1: "p ⟶ (q ⟶ r)" | ||
+ | show "(p ⟶ q) ⟶ (p ⟶ r)" | ||
+ | proof (rule impI) | ||
+ | assume 2: "p ⟶ q" | ||
+ | show "p ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume 3: "p" | ||
+ | have 4: "q ⟶ r" using 1 3 by (rule mp) | ||
+ | have 5: "q" using 2 3 by (rule mp) | ||
+ | show "r" using 4 5 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 164: | Línea 275: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_12: | lemma ejercicio_12: | ||
− | assumes "(p ⟶ q) ⟶ r" | + | assumes 1: "(p ⟶ q) ⟶ r" |
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | proof (rule impI) | |
+ | assume 2: "p" | ||
+ | show "q ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume 3: "q" | ||
+ | have 4: "p ⟶ q" | ||
+ | proof (rule impI) | ||
+ | assume 5: "p" | ||
+ | show "q" using 3 by this | ||
+ | qed | ||
+ | show "r" using 1 4 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
section {* Conjunciones *} | section {* Conjunciones *} | ||
Línea 176: | Línea 300: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_13: | lemma ejercicio_13: | ||
assumes "p" | assumes "p" | ||
"q" | "q" | ||
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | using assms(1, 2) by (rule conjI) | |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 187: | Línea 312: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_14: | lemma ejercicio_14: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "p" | shows "p" | ||
− | + | using assms(1) by (rule conjunct1) | |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 197: | Línea 323: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_15: | lemma ejercicio_15: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "q" | shows "q" | ||
− | + | using assms(1) by (rule conjunct2) | |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 207: | Línea 334: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_16: | lemma ejercicio_16: | ||
assumes "p ∧ (q ∧ r)" | assumes "p ∧ (q ∧ r)" | ||
shows "(p ∧ q) ∧ r" | shows "(p ∧ q) ∧ r" | ||
− | + | proof - | |
+ | have 1: "p" using assms(1) by (rule conjunct1) | ||
+ | have 2: "q ∧ r" using assms(1) by (rule conjunct2) | ||
+ | have 3: "q" using 2 by (rule conjunct1) | ||
+ | have 4: "r" using 2 by (rule conjunct2) | ||
+ | have 5: "p ∧ q" using 1 3 by (rule conjI) | ||
+ | show "(p ∧ q) ∧ r" using 5 4 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 217: | Línea 352: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_17: | lemma ejercicio_17: | ||
− | assumes "(p ∧ q) ∧ r" | + | assumes 1: "(p ∧ q) ∧ r" |
shows "p ∧ (q ∧ r)" | shows "p ∧ (q ∧ r)" | ||
− | + | proof - | |
+ | have 2: "r" using 1 by (rule conjunct2) | ||
+ | have 3: "p ∧ q" using 1 by (rule conjunct1) | ||
+ | have 4: "p" using 3 by (rule conjunct1) | ||
+ | have 5: "q" using 3 by (rule conjunct2) | ||
+ | have 6: "q ∧ r" using 5 2 by (rule conjI) | ||
+ | show ?thesis using 4 6 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 227: | Línea 370: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_18: | lemma ejercicio_18: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | proof (rule impI) | |
+ | assume "p" | ||
+ | show "q" using assms(1) by (rule conjunct2) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 237: | Línea 384: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_19: | lemma ejercicio_19: | ||
− | assumes "(p ⟶ q) ∧ (p ⟶ r)" | + | assumes 1: "(p ⟶ q) ∧ (p ⟶ r)" |
shows "p ⟶ q ∧ r" | shows "p ⟶ q ∧ r" | ||
− | + | proof (rule impI) | |
+ | assume 2: "p" | ||
+ | have 3: "p ⟶ q" using 1 by (rule conjunct1) | ||
+ | have 4: "p ⟶ r" using 1 by (rule conjunct2) | ||
+ | have 5: "q" using 3 2 by (rule mp) | ||
+ | have 6: "r" using 4 2 by (rule mp) | ||
+ | show "q ∧ r" using 5 6 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 247: | Línea 402: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_20: | lemma ejercicio_20: | ||
− | assumes "p ⟶ q ∧ r" | + | assumes 1: "p ⟶ q ∧ r" |
shows "(p ⟶ q) ∧ (p ⟶ r)" | shows "(p ⟶ q) ∧ (p ⟶ r)" | ||
− | + | proof (rule conjI) | |
+ | show "p ⟶ q" | ||
+ | proof (rule impI) | ||
+ | assume 2: "p" | ||
+ | have 3: "q ∧ r" using 1 2 by (rule mp) | ||
+ | show 4: "q" using 3 by (rule conjunct1) | ||
+ | qed | ||
+ | show "p ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume 2: "p" | ||
+ | have 3: "q ∧ r" using 1 2 by (rule mp) | ||
+ | show 4: "r" using 3 by (rule conjunct2) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 257: | Línea 426: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_21: | lemma ejercicio_21: | ||
− | assumes "p ⟶ (q ⟶ r)" | + | assumes 1: "p ⟶ (q ⟶ r)" |
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | proof (rule impI) | |
+ | assume 2: "p ∧ q" | ||
+ | have 3: "p" using 2 by (rule conjunct1) | ||
+ | have 4: "q ⟶ r" using 1 3 by (rule mp) | ||
+ | have 5: "q" using 2 by (rule conjunct2) | ||
+ | show "r" using 4 5 by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 267: | Línea 443: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_22: | lemma ejercicio_22: | ||
− | assumes "p ∧ q ⟶ r" | + | assumes 1: "p ∧ q ⟶ r" |
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | proof (rule impI) | |
+ | assume 2: "p" | ||
+ | show "q ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume 3: "q" | ||
+ | have 4: "p ∧ q" using 2 3 by (rule conjI) | ||
+ | show "r" using 1 4 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 277: | Línea 462: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_23: | lemma ejercicio_23: | ||
− | assumes "(p ⟶ q) ⟶ r" | + | assumes 1: "(p ⟶ q) ⟶ r" |
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | proof (rule impI) | |
+ | assume 2: "p ∧ q" | ||
+ | have 3: "p ⟶ q" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | show "q" using 2 by (rule conjunct2) | ||
+ | qed | ||
+ | show "r" using 1 3 by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 287: | Línea 481: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | (* pabalagon *) | ||
lemma ejercicio_24: | lemma ejercicio_24: | ||
− | assumes "p ∧ (q ⟶ r)" | + | assumes 1: "p ∧ (q ⟶ r)" |
shows "(p ⟶ q) ⟶ r" | shows "(p ⟶ q) ⟶ r" | ||
− | + | proof (rule impI) | |
+ | assume 2: "p ⟶ q" | ||
+ | have 3: "p" using 1 by (rule conjunct1) | ||
+ | have 4: "q ⟶ r" using 1 by (rule conjunct2) | ||
+ | have 5: "q" using 2 3 by (rule mp) | ||
+ | show 6: "r" using 4 5 by (rule mp) | ||
+ | qed | ||
section {* Disyunciones *} | section {* Disyunciones *} |
Revisión del 19:29 14 ene 2019
chapter {* R6: Deducción natural proposicional *}
theory R6_Deduccion_natural_proposicional
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_1:
assumes 1: "p ⟶ q" and
2: "p"
shows "q"
proof -
show "q" using 1 2 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_2:
assumes 1: "p ⟶ q" and
2: "q ⟶ r" and
3: "p"
shows "r"
proof -
have 4: "q" using 1 3 by (rule mp)
show "r" using 2 4 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_3:
assumes 1: "p ⟶ (q ⟶ r)" and
2: "p ⟶ q" and
3: "p"
shows "r"
proof -
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_4:
assumes 1: "p ⟶ q" and
2: "q ⟶ r"
shows "p ⟶ r"
proof -
{ assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)}
thus "p ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_5:
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
show "r" using 4 2 by (rule mp)
qed
qed
(* pabalagon *)
lemma ejercicio_5_2:
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{ assume 2: "q"
{ assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "r" using 4 2 by (rule mp)}
hence "p ⟶ r" by (rule impI)
}
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_6:
assumes 1: "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "p ⟶ q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_7:
assumes 1: "p"
shows "q ⟶ p"
proof (rule impI)
assume 2: "q"
show "p" using 1 by this
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_8:
"p ⟶ (q ⟶ p)"
proof (rule impI)
assume 1: "p"
show "q ⟶ p"
proof (rule impI)
assume 2: "q"
show "p" using 1 by this
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_9:
assumes 1: "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "q ⟶ r"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
show "r" using 2 4 by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_10:
assumes 1: "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof (rule impI)
assume 2: "r"
show "q ⟶ (p ⟶ s)"
proof (rule impI)
assume 3: "q"
show "p ⟶ s"
proof (rule impI)
assume 4: "p"
have 5: "q ⟶ (r ⟶ s)" using 1 4 by (rule mp)
have 6: "r ⟶ s" using 5 3 by (rule mp)
show "s" using 6 2 by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_11:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof (rule impI)
assume 1: "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)" using 1 ejercicio_6 by simp
qed
(* pabalagon *)
lemma ejercicio_11_2:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof (rule impI)
assume 1: "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "p ⟶ q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_12:
assumes 1: "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume 2: "p"
show "q ⟶ r"
proof (rule impI)
assume 3: "q"
have 4: "p ⟶ q"
proof (rule impI)
assume 5: "p"
show "q" using 3 by this
qed
show "r" using 1 4 by (rule mp)
qed
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_13:
assumes "p"
"q"
shows "p ∧ q"
using assms(1, 2) by (rule conjI)
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_14:
assumes "p ∧ q"
shows "p"
using assms(1) by (rule conjunct1)
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_15:
assumes "p ∧ q"
shows "q"
using assms(1) by (rule conjunct2)
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_16:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof -
have 1: "p" using assms(1) by (rule conjunct1)
have 2: "q ∧ r" using assms(1) by (rule conjunct2)
have 3: "q" using 2 by (rule conjunct1)
have 4: "r" using 2 by (rule conjunct2)
have 5: "p ∧ q" using 1 3 by (rule conjI)
show "(p ∧ q) ∧ r" using 5 4 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_17:
assumes 1: "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof -
have 2: "r" using 1 by (rule conjunct2)
have 3: "p ∧ q" using 1 by (rule conjunct1)
have 4: "p" using 3 by (rule conjunct1)
have 5: "q" using 3 by (rule conjunct2)
have 6: "q ∧ r" using 5 2 by (rule conjI)
show ?thesis using 4 6 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_18:
assumes "p ∧ q"
shows "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using assms(1) by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_19:
assumes 1: "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof (rule impI)
assume 2: "p"
have 3: "p ⟶ q" using 1 by (rule conjunct1)
have 4: "p ⟶ r" using 1 by (rule conjunct2)
have 5: "q" using 3 2 by (rule mp)
have 6: "r" using 4 2 by (rule mp)
show "q ∧ r" using 5 6 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_20:
assumes 1: "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof (rule conjI)
show "p ⟶ q"
proof (rule impI)
assume 2: "p"
have 3: "q ∧ r" using 1 2 by (rule mp)
show 4: "q" using 3 by (rule conjunct1)
qed
show "p ⟶ r"
proof (rule impI)
assume 2: "p"
have 3: "q ∧ r" using 1 2 by (rule mp)
show 4: "r" using 3 by (rule conjunct2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_21:
assumes 1: "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume 2: "p ∧ q"
have 3: "p" using 2 by (rule conjunct1)
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 by (rule conjunct2)
show "r" using 4 5 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_22:
assumes 1: "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume 2: "p"
show "q ⟶ r"
proof (rule impI)
assume 3: "q"
have 4: "p ∧ q" using 2 3 by (rule conjI)
show "r" using 1 4 by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_23:
assumes 1: "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume 2: "p ∧ q"
have 3: "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using 2 by (rule conjunct2)
qed
show "r" using 1 3 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_24:
assumes 1: "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof (rule impI)
assume 2: "p ⟶ q"
have 3: "p" using 1 by (rule conjunct1)
have 4: "q ⟶ r" using 1 by (rule conjunct2)
have 5: "q" using 2 3 by (rule mp)
show 6: "r" using 4 5 by (rule mp)
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_25:
assumes "p"
shows "p ∨ q"
oops
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_26:
assumes "q"
shows "p ∨ q"
oops
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_27:
assumes "p ∨ q"
shows "q ∨ p"
oops
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_28:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
oops
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_29:
assumes "p ∨ p"
shows "p"
oops
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_30:
assumes "p"
shows "p ∨ p"
oops
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_31:
assumes "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
oops
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_32:
assumes "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
oops
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_33:
assumes "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
oops
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_34:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
oops
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_35:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
oops
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_36:
assumes "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
oops
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_37:
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
oops
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_38:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
oops
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
lemma ejercicio_39:
assumes "p"
shows "¬¬p"
oops
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_40:
assumes "¬p"
shows "p ⟶ q"
oops
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_41:
assumes "p ⟶ q"
shows "¬q ⟶ ¬p"
oops
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_42:
assumes "p∨q"
"¬q"
shows "p"
oops
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_43:
assumes "p ∨ q"
"¬p"
shows "q"
oops
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_44:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
oops
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_45:
assumes "p ∧ q"
shows "¬(¬p ∨ ¬q)"
oops
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_46:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
oops
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
lemma ejercicio_47:
assumes "¬p ∧ ¬q"
shows "¬(p ∨ q)"
oops
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
lemma ejercicio_48:
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
oops
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
lemma ejercicio_49:
"¬(p ∧ ¬p)"
oops
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_50:
assumes "p ∧ ¬p"
shows "q"
oops
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_51:
assumes "¬¬p"
shows "p"
oops
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_52:
"p ∨ ¬p"
oops
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_53:
"((p ⟶ q) ⟶ p) ⟶ p"
oops
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_54:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
oops
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_55:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
oops
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_56:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
oops
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_57:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
oops
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_58:
"(p ⟶ q) ∨ (q ⟶ p)"
oops
end