Diferencia entre revisiones de «Relación 6»
De Razonamiento automático (2018-19)
m (Protegió «Relación 6» ([Editar=Solo administradores] (indefinido) [Trasladar=Solo administradores] (indefinido))) |
|||
(No se muestran 29 ediciones intermedias de 14 usuarios) | |||
Línea 50: | Línea 50: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim josgomrom4 cammonagu raffergon2 chrgencar gleherlop giafus1 | + | (* pabalagon manperjim josgomrom4 cammonagu raffergon2 chrgencar |
− | marfruman1 enrparalv *) | + | gleherlop giafus1 marfruman1 enrparalv pabbergue antramhur alikan |
+ | juacanrod hugrubsan aribatval*) | ||
lemma ejercicio_1: | lemma ejercicio_1: | ||
assumes 1: "p ⟶ q" and | assumes 1: "p ⟶ q" and | ||
Línea 73: | Línea 74: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim josgomrom4 cammonagu gleherlop raffergon2 chrgencar giafus1 | + | (* pabalagon manperjim josgomrom4 cammonagu gleherlop raffergon2 |
− | marfruman1 alfmarcua enrparalv *) | + | chrgencar giafus1 marfruman1 alfmarcua enrparalv pabbergue antramhur |
+ | alikan juacanrod hugrubsan aribatval*) | ||
lemma ejercicio_2: | lemma ejercicio_2: | ||
assumes 1: "p ⟶ q" and | assumes 1: "p ⟶ q" and | ||
Línea 101: | Línea 103: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim josgomrom4 cammonagu gleherlop raffergon2 chrgencar giafus1 | + | (* pabalagon manperjim josgomrom4 cammonagu gleherlop raffergon2 |
− | marfruman1 alfmarcua enrparalv *) | + | chrgencar giafus1 marfruman1 alfmarcua enrparalv pabbergue antramhur |
+ | alikan juacanrod hugrubsan aribatval*) | ||
lemma ejercicio_3: | lemma ejercicio_3: | ||
assumes 1: "p ⟶ (q ⟶ r)" and | assumes 1: "p ⟶ (q ⟶ r)" and | ||
Línea 131: | Línea 134: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim josgomrom4 cammonagu chrgencar raffergon2 gleherlop giafus1 | + | (* pabalagon manperjim josgomrom4 cammonagu chrgencar raffergon2 |
− | marfruman1 alfmarcua enrparalv *) | + | gleherlop giafus1 marfruman1 alfmarcua enrparalv pabbergue antramhur |
+ | alikan juacanrod hugrubsan aribatval*) | ||
lemma ejercicio_4: | lemma ejercicio_4: | ||
assumes 1: "p ⟶ q" and | assumes 1: "p ⟶ q" and | ||
Línea 160: | Línea 164: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim raffergon2 giafus1 | + | (* pabalagon manperjim raffergon2 giafus1 gleherlop marfruman1 alfmarcua |
− | marfruman1 alfmarcua enrparalv chrgencar *) | + | enrparalv chrgencar pabbergue antramhur alikan hugrubsan aribatval*) |
lemma ejercicio_5: | lemma ejercicio_5: | ||
assumes 1: "p ⟶ (q ⟶ r)" | assumes 1: "p ⟶ (q ⟶ r)" | ||
Línea 175: | Línea 179: | ||
qed | qed | ||
− | (* benber josgomrom4 cammonagu *) | + | (* benber josgomrom4 juacanrod cammonagu *) |
lemma ejercicio_5_1: | lemma ejercicio_5_1: | ||
assumes "p ⟶ (q ⟶ r)" | assumes "p ⟶ (q ⟶ r)" | ||
Línea 202: | Línea 206: | ||
thus "q ⟶ (p ⟶ r)" by (rule impI) | thus "q ⟶ (p ⟶ r)" by (rule impI) | ||
qed | qed | ||
− | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 210: | Línea 213: | ||
(* pabalagon manperjim cammonagu chrgencar raffergon2 gleherlop giafus1 | (* pabalagon manperjim cammonagu chrgencar raffergon2 gleherlop giafus1 | ||
− | marfruman1 alfmarcua enrparalv *) | + | marfruman1 alfmarcua enrparalv pabbergue antramhur alikan juacanrod |
+ | hugrubsan aribatval*) | ||
lemma ejercicio_6: | lemma ejercicio_6: | ||
assumes 1: "p ⟶ (q ⟶ r)" | assumes 1: "p ⟶ (q ⟶ r)" | ||
Línea 245: | Línea 249: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim josgomrom4 raffergon2 giafus1 marfruman1 enrparalv *) | + | (* pabalagon manperjim josgomrom4 raffergon2 giafus1 gleherlop |
+ | marfruman1 enrparalv pabbergue antramhur alikan hugrubsan aribatval*) | ||
lemma ejercicio_7: | lemma ejercicio_7: | ||
assumes 1: "p" | assumes 1: "p" | ||
Línea 254: | Línea 259: | ||
qed | qed | ||
− | (* benber cammonagu chrgencar | + | (* benber cammonagu juacanrod chrgencar *) |
lemma ejercicio_7_1: | lemma ejercicio_7_1: | ||
assumes "p" | assumes "p" | ||
Línea 273: | Línea 278: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim josgomrom4 raffergon2 giafus1 marfruman1 enrparalv *) | + | (* pabalagon manperjim josgomrom4 raffergon2 giafus1 marfruman1 |
+ | enrparalv pabbergue antramhur alikan hugrubsan aribatval*) | ||
lemma ejercicio_8: | lemma ejercicio_8: | ||
"p ⟶ (q ⟶ p)" | "p ⟶ (q ⟶ p)" | ||
Línea 285: | Línea 291: | ||
qed | qed | ||
− | (* benber cammonagu gleherlop chrgencar alfmarcua *) | + | (* benber cammonagu gleherlop chrgencar juacanrod alfmarcua *) |
lemma ejercicio_8_1: | lemma ejercicio_8_1: | ||
"p ⟶ (q ⟶ p)" | "p ⟶ (q ⟶ p)" | ||
using ejercicio_7_1 by (rule impI) | using ejercicio_7_1 by (rule impI) | ||
− | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 296: | Línea 301: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim raffergon2 giafus1 marfruman1 alfmarcua enrparalv *) | + | (* pabalagon manperjim raffergon2 giafus1 marfruman1 alfmarcua enrparalv |
+ | gleherlop antramhur alikan hugrubsan aribatval*) | ||
lemma ejercicio_9: | lemma ejercicio_9: | ||
assumes 1: "p ⟶ q" | assumes 1: "p ⟶ q" | ||
Línea 310: | Línea 316: | ||
qed | qed | ||
− | (* benber josgomrom4 cammonagu chrgencar | + | (* benber josgomrom4 cammonagu chrgencar juacanrod pabbergue *) |
lemma ejercicio_9_1: | lemma ejercicio_9_1: | ||
assumes "p ⟶ q" | assumes "p ⟶ q" | ||
Línea 329: | Línea 335: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim raffergon2 marfruman1 alfmarcua enrparalv *) | + | (* pabalagon manperjim raffergon2 marfruman1 gleherlop alfmarcua |
+ | enrparalv pabbergue antramhur alikan juacanrod hugrubsan aribatval*) | ||
lemma ejercicio_10: | lemma ejercicio_10: | ||
assumes 1: "p ⟶ (q ⟶ (r ⟶ s))" | assumes 1: "p ⟶ (q ⟶ (r ⟶ s))" | ||
Línea 348: | Línea 355: | ||
qed | qed | ||
− | (* benber josgomrom4 cammonagu | + | (* benber josgomrom4 cammonagu chrgencar giafus1 *) |
lemma ejercicio_10_1: | lemma ejercicio_10_1: | ||
assumes "p ⟶ (q ⟶ (r ⟶ s))" | assumes "p ⟶ (q ⟶ (r ⟶ s))" | ||
Línea 373: | Línea 380: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim josgomrom4 cammonagu giafus1 alfmarcua chrgencar *) | + | (* pabalagon manperjim josgomrom4 gleherlop cammonagu giafus1 alfmarcua |
+ | chrgencar pabbergue alikan juacanrod hugrubsan aribatval*) | ||
lemma ejercicio_11: | lemma ejercicio_11: | ||
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
Línea 381: | Línea 389: | ||
qed | qed | ||
− | (* pabalagon raffergon2 marfruman1 enrparalv *) | + | (* pabalagon raffergon2 marfruman1 enrparalv antramhur *) |
lemma ejercicio_11_2: | lemma ejercicio_11_2: | ||
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
Línea 422: | Línea 430: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim raffergon2 marfruman1 enrparalv *) | + | (* pabalagon manperjim raffergon2 marfruman1 gleherlop enrparalv |
+ | pabbergue antramhur alikan juacanrod hugrubsan aribatval*) | ||
lemma ejercicio_12: | lemma ejercicio_12: | ||
assumes 1: "(p ⟶ q) ⟶ r" | assumes 1: "(p ⟶ q) ⟶ r" | ||
Línea 461: | Línea 470: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon | + | (* pabalagon *) |
lemma ejercicio_13: | lemma ejercicio_13: | ||
assumes "p" | assumes "p" | ||
Línea 468: | Línea 477: | ||
using assms(1, 2) by (rule conjI) | using assms(1, 2) by (rule conjI) | ||
− | (* benber manperjim josgomrom4 cammonagu raffergon2 marfruman1 alfmarcua enrparalv chrgencar *) | + | (* benber manperjim josgomrom4 cammonagu raffergon2 marfruman1 alfmarcua |
+ | enrparalv chrgencar gleherlop pabbergue antramhur juacanrod hugrubsan | ||
+ | alikan aribatval*) | ||
lemma ejercicio_13_1: | lemma ejercicio_13_1: | ||
assumes "p" | assumes "p" | ||
Línea 486: | Línea 497: | ||
using assms(1) by (rule conjunct1) | using assms(1) by (rule conjunct1) | ||
− | (* benber cammonagu raffergon2 marfruman1 alfmarcua enrparalv chrgencar *) | + | (* benber manperjim cammonagu raffergon2 marfruman1 alfmarcua enrparalv |
+ | chrgencar pabbergue gleherlop antramhur hugrubsan juacanrod alikan *) | ||
lemma ejercicio_14_1: | lemma ejercicio_14_1: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
Línea 497: | Línea 509: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim josgomrom4 *) | + | (* pabalagon manperjim juacanrod josgomrom4 *) |
lemma ejercicio_15: | lemma ejercicio_15: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
Línea 503: | Línea 515: | ||
using assms(1) by (rule conjunct2) | using assms(1) by (rule conjunct2) | ||
− | (* benber cammonagu raffergon2 marfruman1 alfmarcua enrparalv chrgencar *) | + | (* benber cammonagu raffergon2 marfruman1 alfmarcua enrparalv chrgencar |
+ | pabbergue antramhur gleherlop hugrubsan alikan aribatval*) | ||
lemma ejercicio_15_1: | lemma ejercicio_15_1: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
Línea 514: | Línea 527: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua cammmonagu enrparalv chrgencar *) | + | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua |
+ | cammmonagu enrparalv chrgencar gleherlop pabbergue antramhur | ||
+ | hugrubsan alikan juacanrod cammonagu aribatval*) | ||
lemma ejercicio_16: | lemma ejercicio_16: | ||
assumes "p ∧ (q ∧ r)" | assumes "p ∧ (q ∧ r)" | ||
Línea 533: | Línea 548: | ||
proof - (* TODO? *) | proof - (* TODO? *) | ||
have "q ∧ r" using assms by (rule conjunct2) | have "q ∧ r" using assms by (rule conjunct2) | ||
− | |||
have "p" using assms by (rule conjunct1) | have "p" using assms by (rule conjunct1) | ||
moreover have "q" using `q ∧ r` by (rule conjunct1) | moreover have "q" using `q ∧ r` by (rule conjunct1) | ||
Línea 546: | Línea 560: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua cammonagu chrgencar *) | + | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua |
+ | cammonagu chrgencar gleherlop pabbergue antramhur enrparalv hugrubsan | ||
+ | juacanrod alikan aribatval*) | ||
lemma ejercicio_17: | lemma ejercicio_17: | ||
assumes 1: "(p ∧ q) ∧ r" | assumes 1: "(p ∧ q) ∧ r" | ||
Línea 565: | Línea 581: | ||
proof - | proof - | ||
have "p ∧ q" using assms by (rule conjunct1) | have "p ∧ q" using assms by (rule conjunct1) | ||
− | |||
have "p" using `p ∧ q` by (rule conjunct1) | have "p" using `p ∧ q` by (rule conjunct1) | ||
moreover have "q ∧ r" | moreover have "q ∧ r" | ||
Línea 581: | Línea 596: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1*) | + | (* pabalagon raffergon2 marfruman1 juacanrod alikan *) |
lemma ejercicio_18: | lemma ejercicio_18: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
Línea 590: | Línea 605: | ||
qed | qed | ||
− | (* benber manperjim josgomrom4 cammonagu alfmarcua chrgencar *) | + | (* benber manperjim josgomrom4 cammonagu alfmarcua chrgencar pabbergue |
+ | gleherlop antramhur enrparalv hugrubsan aribatval*) | ||
lemma ejercicio_18_1: | lemma ejercicio_18_1: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
Línea 603: | Línea 619: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1 alfmarcua cammonagu chrgencar *) | + | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua |
+ | cammonagu chrgencar gleherlop pabbergue antramhur enrparalv juacanrod | ||
+ | hugrubsan alikan aribatval*) | ||
lemma ejercicio_19: | lemma ejercicio_19: | ||
assumes 1: "(p ⟶ q) ∧ (p ⟶ r)" | assumes 1: "(p ⟶ q) ∧ (p ⟶ r)" | ||
Línea 637: | Línea 655: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1 alfmarcua cammonagu chrgencar *) | + | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua |
+ | cammonagu chrgencar gleherlop pabbergue antramhur enrparalv juacanrod | ||
+ | hugrubsan alikan aribatval*) | ||
lemma ejercicio_20: | lemma ejercicio_20: | ||
assumes 1: "p ⟶ q ∧ r" | assumes 1: "p ⟶ q ∧ r" | ||
Línea 681: | Línea 701: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1 alfmarcua cammonagu chrgencar *) | + | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua |
+ | cammonagu chrgencar pabbergue gleherlop antramhur enrparalv juacanrod | ||
+ | hugrubsan alikan aribatval*) | ||
lemma ejercicio_21: | lemma ejercicio_21: | ||
assumes 1: "p ⟶ (q ⟶ r)" | assumes 1: "p ⟶ (q ⟶ r)" | ||
Línea 710: | Línea 732: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1 alfmarcua chrgencar *) | + | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua |
+ | chrgencar pabbergue gleherlop antramhur enrparalv juacanrod hugrubsan | ||
+ | alikan aribatval*) | ||
lemma ejercicio_22: | lemma ejercicio_22: | ||
assumes 1: "p ∧ q ⟶ r" | assumes 1: "p ∧ q ⟶ r" | ||
Línea 724: | Línea 748: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_22_1: | lemma ejercicio_22_1: | ||
assumes "p ∧ q ⟶ r" | assumes "p ∧ q ⟶ r" | ||
Línea 743: | Línea 767: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1 alfmarcua chrgencar *) | + | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua |
+ | chrgencar pabbergue gleherlop antramhur enrparalv juacanrod hugrubsan | ||
+ | alikan aribatval*) | ||
lemma ejercicio_23: | lemma ejercicio_23: | ||
assumes 1: "(p ⟶ q) ⟶ r" | assumes 1: "(p ⟶ q) ⟶ r" | ||
Línea 757: | Línea 783: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_23_1: | lemma ejercicio_23_1: | ||
assumes "(p ⟶ q) ⟶ r" | assumes "(p ⟶ q) ⟶ r" | ||
Línea 773: | Línea 799: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1 alfmarcua chrgencar *) | + | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua |
+ | chrgencar pabbergue gleherlop antramhur enrparalv hugrubsan juacanrod | ||
+ | cammonagu alikan aribatval*) | ||
lemma ejercicio_24: | lemma ejercicio_24: | ||
assumes 1: "p ∧ (q ⟶ r)" | assumes 1: "p ∧ (q ⟶ r)" | ||
Línea 791: | Línea 819: | ||
proof | proof | ||
have "q ⟶ r" using assms by (rule conjunct2) | have "q ⟶ r" using assms by (rule conjunct2) | ||
− | |||
assume "p ⟶ q" | assume "p ⟶ q" | ||
moreover have "p" using assms by (rule conjunct1) | moreover have "p" using assms by (rule conjunct1) | ||
Línea 805: | Línea 832: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim benber cammonagu raffergon2 marfruman1 alfmarcua chrgencar *) | + | (* pabalagon manperjim josgomrom4 benber cammonagu raffergon2 marfruman1 |
+ | alfmarcua chrgencar gleherlop pabbergue antramhur enrparalv juacanrod | ||
+ | hugrubsan alikan aribatval*) | ||
lemma ejercicio_25: | lemma ejercicio_25: | ||
assumes "p" | assumes "p" | ||
Línea 816: | Línea 845: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim benber cammonagu marfruman1 alfmarcua chrgencar *) | + | (* pabalagon manperjim josgomrom4 benber cammonagu marfruman1 alfmarcua |
+ | chrgencar pabbergue gleherlop antramhur enrparalv juacanrod hugrubsan | ||
+ | alikan aribatval*) | ||
lemma ejercicio_26: | lemma ejercicio_26: | ||
assumes "q" | assumes "q" | ||
Línea 827: | Línea 858: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1*) | + | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 chrgencar |
+ | pabbergue antramhur enrparalv juacanrod hugrubsan cammonagu alikan aribatval*) | ||
lemma ejercicio_27: | lemma ejercicio_27: | ||
assumes 1: "p ∨ q" | assumes 1: "p ∨ q" | ||
Línea 837: | Línea 869: | ||
qed | qed | ||
− | (* benber *) | + | (* benber alfmarcua gleherlop *) |
lemma ejercicio_27_1: | lemma ejercicio_27_1: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
Línea 853: | Línea 885: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1*) | + | (* pabalagon manperjim josgomrom4 raffergon2 marfruman1 chrgencar |
+ | gleherlop alfmarcua pabbergue antramhur enrparalv juacanrod hugrubsan | ||
+ | cammonagu alikan aribatval*) | ||
lemma ejercicio_28: | lemma ejercicio_28: | ||
assumes 1: "q ⟶ r" | assumes 1: "q ⟶ r" | ||
Línea 887: | Línea 921: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon juacanrod marfruman1 *) |
lemma ejercicio_29: | lemma ejercicio_29: | ||
assumes 1: "p ∨ p" | assumes 1: "p ∨ p" | ||
Línea 897: | Línea 931: | ||
qed | qed | ||
− | (* benber cammonagu raffergon2 chrgencar *) | + | (* benber manperjim cammonagu josgomrom4 raffergon2 chrgencar alfmarcua |
+ | gleherlop pabbergue antramhur enrparalv hugrubsan alikan aribatval*) | ||
lemma ejercicio_29_1: | lemma ejercicio_29_1: | ||
assumes "p ∨ p" | assumes "p ∨ p" | ||
Línea 908: | Línea 943: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim benber raffergon2 marfruman1*) | + | (* pabalagon manperjim benber josgomrom4 raffergon2 marfruman1 |
+ | chrgencar alfmarcua pabbergue gleherlop antramhur enrparalv hugrubsan | ||
+ | juacanrod cammonagu alikan aribatval*) | ||
lemma ejercicio_30: | lemma ejercicio_30: | ||
assumes "p" | assumes "p" | ||
Línea 919: | Línea 956: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 alfmarcua pabbergue |
+ | gleherlop antramhur enrparalv juacanrod hugrubsan alikan aribatval*) | ||
lemma ejercicio_31: | lemma ejercicio_31: | ||
assumes 1: "p ∨ (q ∨ r)" | assumes 1: "p ∨ (q ∨ r)" | ||
Línea 936: | Línea 974: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_31_1: | lemma ejercicio_31_1: | ||
assumes "p ∨ (q ∨ r)" | assumes "p ∨ (q ∨ r)" | ||
Línea 962: | Línea 1000: | ||
ultimately show "(p ∨ q) ∨ r" by (rule disjE) | ultimately show "(p ∨ q) ∨ r" by (rule disjE) | ||
qed | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 968: | Línea 1007: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 alfmarcua gleherlop |
+ | pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*) | ||
lemma ejercicio_32: | lemma ejercicio_32: | ||
assumes 1: "(p ∨ q) ∨ r" | assumes 1: "(p ∨ q) ∨ r" | ||
Línea 985: | Línea 1025: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_32_1: | lemma ejercicio_32_1: | ||
assumes "(p ∨ q) ∨ r" | assumes "(p ∨ q) ∨ r" | ||
Línea 1017: | Línea 1057: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 chrgencar gleherlop |
+ | alfmarcua pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*) | ||
lemma ejercicio_33: | lemma ejercicio_33: | ||
assumes 1: "p ∧ (q ∨ r)" | assumes 1: "p ∧ (q ∨ r)" | ||
Línea 1035: | Línea 1076: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_33_1: | lemma ejercicio_33_1: | ||
assumes "p ∧ (q ∨ r)" | assumes "p ∧ (q ∨ r)" | ||
Línea 1041: | Línea 1082: | ||
proof - | proof - | ||
have "p" using assms by (rule conjunct1) | have "p" using assms by (rule conjunct1) | ||
− | |||
have "q ∨ r" using assms by (rule conjunct2) | have "q ∨ r" using assms by (rule conjunct2) | ||
moreover { | moreover { | ||
Línea 1061: | Línea 1101: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 chrgencar alfmarcua |
+ | gleherlop pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*) | ||
lemma ejercicio_34: | lemma ejercicio_34: | ||
assumes "(p ∧ q) ∨ (p ∧ r)" | assumes "(p ∧ q) ∨ (p ∧ r)" | ||
Línea 1077: | Línea 1118: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_34_1: | lemma ejercicio_34_1: | ||
assumes "(p ∧ q) ∨ (p ∧ r)" | assumes "(p ∧ q) ∨ (p ∧ r)" | ||
Línea 1109: | Línea 1150: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 chrgencar alfmarcua |
+ | gleherlop pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*) | ||
lemma ejercicio_35: | lemma ejercicio_35: | ||
assumes "p ∨ (q ∧ r)" | assumes "p ∨ (q ∧ r)" | ||
Línea 1125: | Línea 1167: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_35_1: | lemma ejercicio_35_1: | ||
assumes "p ∨ (q ∧ r)" | assumes "p ∨ (q ∧ r)" | ||
Línea 1157: | Línea 1199: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 chrgencar alfmarcua |
+ | gleherlop pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*) | ||
lemma ejercicio_36: | lemma ejercicio_36: | ||
assumes 1: "(p ∨ q) ∧ (p ∨ r)" | assumes 1: "(p ∨ q) ∧ (p ∨ r)" | ||
Línea 1178: | Línea 1221: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_36_1: | lemma ejercicio_36_1: | ||
assumes "(p ∨ q) ∧ (p ∨ r)" | assumes "(p ∨ q) ∧ (p ∨ r)" | ||
Línea 1210: | Línea 1253: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 alfmarcua gleherlop |
+ | pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*) | ||
lemma ejercicio_37: | lemma ejercicio_37: | ||
assumes 1: "(p ⟶ r) ∧ (q ⟶ r)" | assumes 1: "(p ⟶ r) ∧ (q ⟶ r)" | ||
Línea 1225: | Línea 1269: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_37_1: | lemma ejercicio_37_1: | ||
assumes "(p ⟶ r) ∧ (q ⟶ r)" | assumes "(p ⟶ r) ∧ (q ⟶ r)" | ||
Línea 1249: | Línea 1293: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 alfmarcua gleherlop |
+ | pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*) | ||
lemma ejercicio_38: | lemma ejercicio_38: | ||
assumes "p ∨ q ⟶ r" | assumes "p ∨ q ⟶ r" | ||
Línea 1267: | Línea 1312: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu*) |
lemma ejercicio_38_1: | lemma ejercicio_38_1: | ||
assumes "p ∨ q ⟶ r" | assumes "p ∨ q ⟶ r" | ||
Línea 1294: | Línea 1339: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim benber raffergon2 marfruman1*) | + | (* pabalagon manperjim benber josgomrom4 raffergon2 gleherlop |
+ | marfruman1 chrgencar alfmarcua pabbergue enrparalv juacanrod | ||
+ | hugrubsan cammonagu alikan aribatval*) | ||
lemma ejercicio_39: | lemma ejercicio_39: | ||
assumes "p" | assumes "p" | ||
Línea 1305: | Línea 1352: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 alfmarcua pabbergue |
+ | gleherlop juacanrod enrparalv hugrubsan alikan chrgencar aribatval*) | ||
lemma ejercicio_40: | lemma ejercicio_40: | ||
assumes 1: "¬p" | assumes 1: "¬p" | ||
Línea 1313: | Línea 1361: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_40_1: | lemma ejercicio_40_1: | ||
assumes "¬p" | assumes "¬p" | ||
Línea 1327: | Línea 1375: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1*) | + | (* pabalagon manperjim raffergon2 josgomrom4 marfruman1 alfmarcua |
+ | pabbergue gleherlop enrparalv juacanrod hugrubsan alikan chrgencar aribatval*) | ||
lemma ejercicio_41: | lemma ejercicio_41: | ||
assumes 1: "p ⟶ q" | assumes 1: "p ⟶ q" | ||
Línea 1335: | Línea 1384: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_41_1: | lemma ejercicio_41_1: | ||
assumes "p ⟶ q" | assumes "p ⟶ q" | ||
Línea 1349: | Línea 1398: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1*) | + | (* pabalagon manperjim raffergon2 josgomrom4 marfruman1 alfmarcua |
+ | pabbergue gleherlop enrparalv juacanrod hugrubsan chrgencar alikan aribatval*) | ||
lemma ejercicio_42: | lemma ejercicio_42: | ||
assumes "p∨q" | assumes "p∨q" | ||
Línea 1360: | Línea 1410: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_42_1: | lemma ejercicio_42_1: | ||
assumes "p∨q" | assumes "p∨q" | ||
Línea 1376: | Línea 1426: | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
− | Ejercicio | + | Ejercicio 43. Demostrar |
p ∨ q, ¬p ⊢ q | p ∨ q, ¬p ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1*) | + | (* pabalagon manperjim raffergon2 josgomrom4 marfruman1 alfmarcua |
+ | pabbergue gleherlop chrgencar enrparalv juacanrod hugrubsan alikan aribatval*) | ||
lemma ejercicio_43: | lemma ejercicio_43: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
Línea 1391: | Línea 1442: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu*) |
lemma ejercicio_43_1: | lemma ejercicio_43_1: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
Línea 1407: | Línea 1458: | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
− | Ejercicio | + | Ejercicio 44. Demostrar |
p ∨ q ⊢ ¬(¬p ∧ ¬q) | p ∨ q ⊢ ¬(¬p ∧ ¬q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim gleherlop chrgencar josgomrom4 marfruman1 pabbergue |
+ | juacanrod hugrubsan alikan aribatval*) | ||
lemma ejercicio_44: | lemma ejercicio_44: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
Línea 1426: | Línea 1478: | ||
qed | qed | ||
− | (* benber *) | + | (* benber alfmarcua cammonagu *) |
lemma ejercicio_44_1: | lemma ejercicio_44_1: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
Línea 1432: | Línea 1484: | ||
proof | proof | ||
assume "¬p ∧ ¬q" | assume "¬p ∧ ¬q" | ||
− | |||
note `p ∨ q` | note `p ∨ q` | ||
moreover { | moreover { | ||
Línea 1452: | Línea 1503: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 gleherlop pabbergue |
+ | juacanrod hugrubsan alikan chrgencar aribatval*) | ||
lemma ejercicio_45: | lemma ejercicio_45: | ||
assumes 1: "p ∧ q" | assumes 1: "p ∧ q" | ||
Línea 1467: | Línea 1519: | ||
qed | qed | ||
− | (* benber *) | + | (* benber alfmarcua cammonagu *) |
lemma ejercicio_45_1: | lemma ejercicio_45_1: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
Línea 1491: | Línea 1543: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 gleherlop pabbergue |
+ | juacanrod hugrubsan alikan chrgencar aribatval*) | ||
lemma ejercicio_46: | lemma ejercicio_46: | ||
assumes 1: "¬(p ∨ q)" | assumes 1: "¬(p ∨ q)" | ||
Línea 1508: | Línea 1561: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammmonagu *) |
lemma ejercicio_46_1: | lemma ejercicio_46_1: | ||
assumes "¬(p ∨ q)" | assumes "¬(p ∨ q)" | ||
Línea 1530: | Línea 1583: | ||
qed | qed | ||
− | text {* --------------------------------------------------------------- | + | (* alfmarcua *) |
− | Ejercicio 47. Demostrar | + | lemma ejercicio_46_2: |
+ | assumes "¬(p ∨ q)" | ||
+ | shows "¬p ∧ ¬q" | ||
+ | proof (rule conjI) | ||
+ | have "p ⟹ p ∨ q" by (rule disjI1) | ||
+ | then have "p ⟶ p ∨ q" by (rule impI) | ||
+ | then show "¬ p" using assms by (rule mt) | ||
+ | next | ||
+ | have "q ⟹ p ∨ q" by (rule disjI2) | ||
+ | then have "q ⟶ p ∨ q" by (rule impI) | ||
+ | then show "¬ q" using assms by (rule mt) | ||
+ | qed | ||
+ | |||
+ | text {* --------------------------------------------------------------- | ||
+ | Ejercicio 47. Demostrar | ||
¬p ∧ ¬q ⊢ ¬(p ∨ q) | ¬p ∧ ¬q ⊢ ¬(p ∨ q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 pabbregue juacanrod |
+ | hugrubsan alikan aribatval*) | ||
lemma ejercicio_47: | lemma ejercicio_47: | ||
assumes 1: "¬p ∧ ¬q" | assumes 1: "¬p ∧ ¬q" | ||
Línea 1551: | Línea 1619: | ||
qed | qed | ||
− | (* benber *) | + | (* benber gleherlop chrgencar cammonagu*) |
lemma ejercicio_47_1: | lemma ejercicio_47_1: | ||
assumes "¬p ∧ ¬q" | assumes "¬p ∧ ¬q" | ||
Línea 1559: | Línea 1627: | ||
hence "¬(¬p ∧ ¬q)" by (rule ejercicio_44_1) | hence "¬(¬p ∧ ¬q)" by (rule ejercicio_44_1) | ||
thus "False" using assms by (rule notE) | thus "False" using assms by (rule notE) | ||
+ | qed | ||
+ | |||
+ | (* alfmarcua *) | ||
+ | lemma ejercicio_47_2: | ||
+ | assumes "¬p ∧ ¬q" | ||
+ | shows "¬(p ∨ q)" | ||
+ | proof (rule notI) | ||
+ | have "¬ p" using assms by (rule conjunct1) | ||
+ | have "¬ q" using assms by (rule conjunct2) | ||
+ | assume "p ∨ q" | ||
+ | then have "q" using `¬ p` by (rule ejercicio_43) | ||
+ | show False using `¬ q` `q` by (rule notE) | ||
qed | qed | ||
Línea 1566: | Línea 1646: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 pabbergue juacanrod |
+ | hugrubsan alikan aribatval*) | ||
lemma ejercicio_48: | lemma ejercicio_48: | ||
assumes 1: "¬p ∨ ¬q" | assumes 1: "¬p ∨ ¬q" | ||
Línea 1581: | Línea 1662: | ||
qed | qed | ||
− | (* benber *) | + | (* benber alfmarcua gleherlop chrgencar cammonagu *) |
lemma ejercicio_48_1: | lemma ejercicio_48_1: | ||
assumes "¬p ∨ ¬q" | assumes "¬p ∨ ¬q" | ||
Línea 1596: | Línea 1677: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 alfmarcu gleherlop |
+ | hugrubsan juacanrod cammonagu alikan chrgencar aribatval*) | ||
lemma ejercicio_49: | lemma ejercicio_49: | ||
"¬(p ∧ ¬p)" | "¬(p ∧ ¬p)" | ||
Línea 1620: | Línea 1702: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon raffergon2 marfruman1*) | + | (* pabalagon manperjim raffergon2 josgomrom4 marfruman1 gleherlop |
+ | alfmarcua enrparalv pabbergue juacanrod hugrubsan alikan chrgencar aribatval*) | ||
lemma ejercicio_50: | lemma ejercicio_50: | ||
assumes 1: "p ∧ ¬p" | assumes 1: "p ∧ ¬p" | ||
Línea 1629: | Línea 1712: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu*) |
lemma ejercicio_50_1: | lemma ejercicio_50_1: | ||
assumes "p ∧ ¬p" | assumes "p ∧ ¬p" | ||
Línea 1644: | Línea 1727: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon manperjim benber raffergon2 marfruman1*) | + | (* pabalagon manperjim benber raffergon2 josgomrom4 marfruman1 gleherlop |
+ | alfmarcua enrparalv pabbergue juacanrod hugrubsan cammmonagu alikan | ||
+ | chrgencar aribatval*) | ||
lemma ejercicio_51: | lemma ejercicio_51: | ||
assumes "¬¬p" | assumes "¬¬p" | ||
Línea 1655: | Línea 1740: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 juacanrod pabbergue alikan aribatval*) |
lemma ejercicio_52: | lemma ejercicio_52: | ||
"p ∨ ¬p" | "p ∨ ¬p" | ||
Línea 1668: | Línea 1753: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_52_1: | lemma ejercicio_52_1: | ||
"p ∨ ¬p" | "p ∨ ¬p" | ||
Línea 1680: | Línea 1765: | ||
} | } | ||
ultimately show "False" by (rule notE) | ultimately show "False" by (rule notE) | ||
+ | qed | ||
+ | |||
+ | (* alfmarcua *) | ||
+ | lemma ejercicio_52_2: | ||
+ | "p ∨ ¬p" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬ (p ∨ ¬ p)" | ||
+ | then have "¬ p ∧ ¬¬ p" by (rule ejercicio_46) | ||
+ | then show False by (rule ejercicio_50) | ||
qed | qed | ||
Línea 1687: | Línea 1781: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 alfmarcua gleherlop |
+ | juacanrod pabbergue alikan chrgencar aribatval*) | ||
lemma ejercicio_53: | lemma ejercicio_53: | ||
"((p ⟶ q) ⟶ p) ⟶ p" | "((p ⟶ q) ⟶ p) ⟶ p" | ||
Línea 1702: | Línea 1797: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_53_1: | lemma ejercicio_53_1: | ||
"((p ⟶ q) ⟶ p) ⟶ p" | "((p ⟶ q) ⟶ p) ⟶ p" | ||
Línea 1722: | Línea 1817: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 gleherlop juacanrod |
+ | pabbergue chrgencar alikan aribatval*) | ||
lemma ejercicio_54: | lemma ejercicio_54: | ||
assumes 1: "¬q ⟶ ¬p" | assumes 1: "¬q ⟶ ¬p" | ||
Línea 1732: | Línea 1828: | ||
qed | qed | ||
− | (* benber *) | + | (* benber alfmarcua cammonagu *) |
lemma ejercicio_54_1: | lemma ejercicio_54_1: | ||
assumes "¬q ⟶ ¬p" | assumes "¬q ⟶ ¬p" | ||
Línea 1769: | Línea 1865: | ||
qed | qed | ||
− | (* benber *) | + | (* benber alfmarcua josgomrom4 manperjim pabbergue juacanrod cammonagu chrgencar alikan aribatval*) |
lemma ejercicio_55_1: | lemma ejercicio_55_1: | ||
assumes "¬(¬p ∧ ¬q)" | assumes "¬(¬p ∧ ¬q)" | ||
Línea 1784: | Línea 1880: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 gleherlop juacanrod |
+ | pabbergue chrgencar alikan aribatval*) | ||
lemma ejercicio_56: | lemma ejercicio_56: | ||
assumes 1: "¬(¬p ∨ ¬q)" | assumes 1: "¬(¬p ∨ ¬q)" | ||
Línea 1801: | Línea 1898: | ||
qed | qed | ||
− | (* benber *) | + | (* benber alfmarcua cammonagu *) |
lemma ejercicio_56_1: | lemma ejercicio_56_1: | ||
assumes "¬(¬p ∨ ¬q)" | assumes "¬(¬p ∨ ¬q)" | ||
Línea 1821: | Línea 1918: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1*) | + | (* pabalagon manperjim marfruman1 josgomrom4 chrgencar gleherlop |
+ | juacanroz pabbergue alikan *) | ||
lemma ejercicio_57: | lemma ejercicio_57: | ||
assumes 1: "¬(p ∧ q)" | assumes 1: "¬(p ∧ q)" | ||
Línea 1846: | Línea 1944: | ||
qed | qed | ||
− | (* benber *) | + | (* benber alfmarcua cammonagu *) |
lemma ejercicio_57_1: | lemma ejercicio_57_1: | ||
assumes "¬(p ∧ q)" | assumes "¬(p ∧ q)" | ||
Línea 1861: | Línea 1959: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (* pabalagon marfruman1 *) | + | (* pabalagon manperjim josgomrom4 marfruman1 juacanrod pabbergue alikan *) |
lemma ejercicio_58: | lemma ejercicio_58: | ||
"(p ⟶ q) ∨ (q ⟶ p)" | "(p ⟶ q) ∨ (q ⟶ p)" | ||
Línea 1890: | Línea 1988: | ||
qed | qed | ||
− | (* pabalagon *) | + | (* pabalagon gleherlop chrgencar *) |
lemma ejercicio_58_2: | lemma ejercicio_58_2: | ||
"(p ⟶ q) ∨ (q ⟶ p)" | "(p ⟶ q) ∨ (q ⟶ p)" | ||
Línea 1903: | Línea 2001: | ||
qed | qed | ||
− | (* benber *) | + | (* benber cammonagu *) |
lemma ejercicio_58_1: | lemma ejercicio_58_1: | ||
"(p ⟶ q) ∨ (q ⟶ p)" | "(p ⟶ q) ∨ (q ⟶ p)" | ||
Línea 1933: | Línea 2031: | ||
hence "False" using `q ⟶ p` by (rule notE) | hence "False" using `q ⟶ p` by (rule notE) | ||
} | } | ||
+ | qed | ||
+ | |||
+ | (* alfmarcua *) | ||
+ | lemma ejercicio_58_3: | ||
+ | "(p ⟶ q) ∨ (q ⟶ p)" | ||
+ | proof (rule disjE) | ||
+ | show "p ∨ ¬ p" by (rule ejercicio_52) | ||
+ | next | ||
+ | assume "¬p" | ||
+ | then have "p ⟶ q" by (rule ejercicio_40) | ||
+ | then show ?thesis by (rule disjI1) | ||
+ | next | ||
+ | assume "p" | ||
+ | then have "q ⟶ p" by (rule ejercicio_7) | ||
+ | then show ?thesis by (rule disjI2) | ||
qed | qed | ||
end | end | ||
</source> | </source> |
Revisión actual del 20:50 6 mar 2019
chapter {* R6: Deducción natural proposicional *}
theory R6_Deduccion_natural_proposicional
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 cammonagu raffergon2 chrgencar
gleherlop giafus1 marfruman1 enrparalv pabbergue antramhur alikan
juacanrod hugrubsan aribatval*)
lemma ejercicio_1:
assumes 1: "p ⟶ q" and
2: "p"
shows "q"
proof -
show "q" using 1 2 by (rule mp)
qed
(* benber alfmarcua *)
lemma ejercicio_1_1:
assumes "p ⟶ q"
"p"
shows "q"
using assms by (rule mp)
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 cammonagu gleherlop raffergon2
chrgencar giafus1 marfruman1 alfmarcua enrparalv pabbergue antramhur
alikan juacanrod hugrubsan aribatval*)
lemma ejercicio_2:
assumes 1: "p ⟶ q" and
2: "q ⟶ r" and
3: "p"
shows "r"
proof -
have 4: "q" using 1 3 by (rule mp)
show "r" using 2 4 by (rule mp)
qed
(* benber *)
lemma ejercicio_2_1:
assumes "p ⟶ q"
"q ⟶ r"
"p"
shows "r"
proof -
have "q" using `p ⟶ q` `p` by (rule mp)
with `q ⟶ r` show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 cammonagu gleherlop raffergon2
chrgencar giafus1 marfruman1 alfmarcua enrparalv pabbergue antramhur
alikan juacanrod hugrubsan aribatval*)
lemma ejercicio_3:
assumes 1: "p ⟶ (q ⟶ r)" and
2: "p ⟶ q" and
3: "p"
shows "r"
proof -
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
(* benber *)
lemma ejercicio_3_1:
assumes "p ⟶ (q ⟶ r)"
"p ⟶ q"
"p"
shows "r"
proof -
have "q ⟶ r" using `p ⟶ (q ⟶ r)` `p` by (rule mp)
moreover have "q" using `p ⟶ q` `p` by (rule mp)
ultimately show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 cammonagu chrgencar raffergon2
gleherlop giafus1 marfruman1 alfmarcua enrparalv pabbergue antramhur
alikan juacanrod hugrubsan aribatval*)
lemma ejercicio_4:
assumes 1: "p ⟶ q" and
2: "q ⟶ r"
shows "p ⟶ r"
proof -
{ assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)}
thus "p ⟶ r" by (rule impI)
qed
(* benber *)
lemma ejercicio_4_1:
assumes "p ⟶ q"
"q ⟶ r"
shows "p ⟶ r"
proof
assume p
with `p ⟶ q` have "q" by (rule mp)
with `q ⟶ r` show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim raffergon2 giafus1 gleherlop marfruman1 alfmarcua
enrparalv chrgencar pabbergue antramhur alikan hugrubsan aribatval*)
lemma ejercicio_5:
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
show "r" using 4 2 by (rule mp)
qed
qed
(* benber josgomrom4 juacanrod cammonagu *)
lemma ejercicio_5_1:
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof
assume "q"
show "p ⟶ r"
proof
assume "p"
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
thus "r" using `q` by (rule mp)
qed
qed
(* pabalagon *)
lemma ejercicio_5_2:
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{ assume 2: "q"
{ assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "r" using 4 2 by (rule mp)}
hence "p ⟶ r" by (rule impI)
}
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim cammonagu chrgencar raffergon2 gleherlop giafus1
marfruman1 alfmarcua enrparalv pabbergue antramhur alikan juacanrod
hugrubsan aribatval*)
lemma ejercicio_6:
assumes 1: "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "p ⟶ q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
qed
(* benber josgomrom4 *)
lemma ejercicio_6_1:
assumes "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof
assume "p ⟶ q"
show "p ⟶ r"
proof
assume "p"
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
moreover from `p ⟶ q` `p` have "q" by (rule mp)
ultimately show "r" by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 giafus1 gleherlop
marfruman1 enrparalv pabbergue antramhur alikan hugrubsan aribatval*)
lemma ejercicio_7:
assumes 1: "p"
shows "q ⟶ p"
proof (rule impI)
assume 2: "q"
show "p" using 1 by this
qed
(* benber cammonagu juacanrod chrgencar *)
lemma ejercicio_7_1:
assumes "p"
shows "q ⟶ p"
proof
show "p" using `p` .
qed
(* alfmarcua *)
lemma ejercicio_7_2:
assumes "p"
shows "q ⟶ p"
using assms by (rule impI)
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 giafus1 marfruman1
enrparalv pabbergue antramhur alikan hugrubsan aribatval*)
lemma ejercicio_8:
"p ⟶ (q ⟶ p)"
proof (rule impI)
assume 1: "p"
show "q ⟶ p"
proof (rule impI)
assume 2: "q"
show "p" using 1 by this
qed
qed
(* benber cammonagu gleherlop chrgencar juacanrod alfmarcua *)
lemma ejercicio_8_1:
"p ⟶ (q ⟶ p)"
using ejercicio_7_1 by (rule impI)
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim raffergon2 giafus1 marfruman1 alfmarcua enrparalv
gleherlop antramhur alikan hugrubsan aribatval*)
lemma ejercicio_9:
assumes 1: "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "q ⟶ r"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
show "r" using 2 4 by (rule mp)
qed
qed
(* benber josgomrom4 cammonagu chrgencar juacanrod pabbergue *)
lemma ejercicio_9_1:
assumes "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof
assume "q ⟶ r"
show "p ⟶ r"
proof
assume "p"
with `p ⟶ q` have "q" by (rule mp)
with `q ⟶ r` show "r" by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
(* pabalagon manperjim raffergon2 marfruman1 gleherlop alfmarcua
enrparalv pabbergue antramhur alikan juacanrod hugrubsan aribatval*)
lemma ejercicio_10:
assumes 1: "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof (rule impI)
assume 2: "r"
show "q ⟶ (p ⟶ s)"
proof (rule impI)
assume 3: "q"
show "p ⟶ s"
proof (rule impI)
assume 4: "p"
have 5: "q ⟶ (r ⟶ s)" using 1 4 by (rule mp)
have 6: "r ⟶ s" using 5 3 by (rule mp)
show "s" using 6 2 by (rule mp)
qed
qed
qed
(* benber josgomrom4 cammonagu chrgencar giafus1 *)
lemma ejercicio_10_1:
assumes "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof
assume "r"
show "q ⟶ (p ⟶ s)"
proof
assume "q"
show "p ⟶ s"
proof
assume "p"
with `p ⟶ (q ⟶ (r ⟶ s))`
have "q ⟶ (r ⟶ s)" by (rule mp)
hence "r ⟶ s" using `q` by (rule mp)
thus "s" using `r` by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 gleherlop cammonagu giafus1 alfmarcua
chrgencar pabbergue alikan juacanrod hugrubsan aribatval*)
lemma ejercicio_11:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof (rule impI)
assume 1: "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)" using 1 ejercicio_6 by simp
qed
(* pabalagon raffergon2 marfruman1 enrparalv antramhur *)
lemma ejercicio_11_2:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof (rule impI)
assume 1: "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)"
proof (rule impI)
assume 2: "p ⟶ q"
show "p ⟶ r"
proof (rule impI)
assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
qed
qed
(* benber *)
lemma ejercicio_11_1:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof
assume "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)"
proof
assume "p ⟶ q"
show "p ⟶ r"
proof
assume p
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
moreover have "q" using `p ⟶ q` `p` by (rule mp)
ultimately show r by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim raffergon2 marfruman1 gleherlop enrparalv
pabbergue antramhur alikan juacanrod hugrubsan aribatval*)
lemma ejercicio_12:
assumes 1: "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume 2: "p"
show "q ⟶ r"
proof (rule impI)
assume 3: "q"
have 4: "p ⟶ q"
proof (rule impI)
assume 5: "p"
show "q" using 3 by this
qed
show "r" using 1 4 by (rule mp)
qed
qed
(* benber josgomrom4 cammonagu giafus1 alfmarcua chrgencar *)
lemma ejercicio_12_1:
assumes "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof
assume "p"
show "q ⟶ r"
proof
assume "q"
hence "p ⟶ q" by (rule impI)
with `(p ⟶ q) ⟶ r` show "r" by (rule mp)
qed
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
(* pabalagon *)
lemma ejercicio_13:
assumes "p"
"q"
shows "p ∧ q"
using assms(1, 2) by (rule conjI)
(* benber manperjim josgomrom4 cammonagu raffergon2 marfruman1 alfmarcua
enrparalv chrgencar gleherlop pabbergue antramhur juacanrod hugrubsan
alikan aribatval*)
lemma ejercicio_13_1:
assumes "p"
"q"
shows "p ∧ q"
using assms by (rule conjI)
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
(* pabalagon josgomrom4 *)
lemma ejercicio_14:
assumes "p ∧ q"
shows "p"
using assms(1) by (rule conjunct1)
(* benber manperjim cammonagu raffergon2 marfruman1 alfmarcua enrparalv
chrgencar pabbergue gleherlop antramhur hugrubsan juacanrod alikan *)
lemma ejercicio_14_1:
assumes "p ∧ q"
shows "p"
using assms by (rule conjunct1)
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
(* pabalagon manperjim juacanrod josgomrom4 *)
lemma ejercicio_15:
assumes "p ∧ q"
shows "q"
using assms(1) by (rule conjunct2)
(* benber cammonagu raffergon2 marfruman1 alfmarcua enrparalv chrgencar
pabbergue antramhur gleherlop hugrubsan alikan aribatval*)
lemma ejercicio_15_1:
assumes "p ∧ q"
shows "q"
using assms by (rule conjunct2)
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua
cammmonagu enrparalv chrgencar gleherlop pabbergue antramhur
hugrubsan alikan juacanrod cammonagu aribatval*)
lemma ejercicio_16:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof -
have 1: "p" using assms(1) by (rule conjunct1)
have 2: "q ∧ r" using assms(1) by (rule conjunct2)
have 3: "q" using 2 by (rule conjunct1)
have 4: "r" using 2 by (rule conjunct2)
have 5: "p ∧ q" using 1 3 by (rule conjI)
show "(p ∧ q) ∧ r" using 5 4 by (rule conjI)
qed
(* benber *)
lemma ejercicio_16_1:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof - (* TODO? *)
have "q ∧ r" using assms by (rule conjunct2)
have "p" using assms by (rule conjunct1)
moreover have "q" using `q ∧ r` by (rule conjunct1)
ultimately have "p ∧ q" by (rule conjI)
moreover have "r" using `q ∧ r` by (rule conjunct2)
ultimately show "(p ∧ q) ∧ r" by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua
cammonagu chrgencar gleherlop pabbergue antramhur enrparalv hugrubsan
juacanrod alikan aribatval*)
lemma ejercicio_17:
assumes 1: "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof -
have 2: "r" using 1 by (rule conjunct2)
have 3: "p ∧ q" using 1 by (rule conjunct1)
have 4: "p" using 3 by (rule conjunct1)
have 5: "q" using 3 by (rule conjunct2)
have 6: "q ∧ r" using 5 2 by (rule conjI)
show ?thesis using 4 6 by (rule conjI)
qed
(* benber *)
lemma ejercicio_17_1:
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof -
have "p ∧ q" using assms by (rule conjunct1)
have "p" using `p ∧ q` by (rule conjunct1)
moreover have "q ∧ r"
proof (rule conjI)
show "q" using `p ∧ q` by (rule conjunct2)
next
show "r" using assms by (rule conjunct2)
qed
ultimately show ?thesis by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
(* pabalagon raffergon2 marfruman1 juacanrod alikan *)
lemma ejercicio_18:
assumes "p ∧ q"
shows "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using assms(1) by (rule conjunct2)
qed
(* benber manperjim josgomrom4 cammonagu alfmarcua chrgencar pabbergue
gleherlop antramhur enrparalv hugrubsan aribatval*)
lemma ejercicio_18_1:
assumes "p ∧ q"
shows "p ⟶ q"
proof
show "q" using assms by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua
cammonagu chrgencar gleherlop pabbergue antramhur enrparalv juacanrod
hugrubsan alikan aribatval*)
lemma ejercicio_19:
assumes 1: "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof (rule impI)
assume 2: "p"
have 3: "p ⟶ q" using 1 by (rule conjunct1)
have 4: "p ⟶ r" using 1 by (rule conjunct2)
have 5: "q" using 3 2 by (rule mp)
have 6: "r" using 4 2 by (rule mp)
show "q ∧ r" using 5 6 by (rule conjI)
qed
(* benber cammonagu *)
lemma ejercicio_19_1:
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof
assume p
show "q ∧ r"
proof
have "p ⟶ q" using assms by (rule conjunct1)
thus "q" using `p` by (rule mp)
next
have "p ⟶ r" using assms by (rule conjunct2)
thus "r" using `p` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua
cammonagu chrgencar gleherlop pabbergue antramhur enrparalv juacanrod
hugrubsan alikan aribatval*)
lemma ejercicio_20:
assumes 1: "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof (rule conjI)
show "p ⟶ q"
proof (rule impI)
assume 2: "p"
have 3: "q ∧ r" using 1 2 by (rule mp)
show 4: "q" using 3 by (rule conjunct1)
qed
show "p ⟶ r"
proof (rule impI)
assume 2: "p"
have 3: "q ∧ r" using 1 2 by (rule mp)
show 4: "r" using 3 by (rule conjunct2)
qed
qed
(* benber *)
lemma ejercicio_20_1:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof
show "p ⟶ q"
proof
assume "p"
with assms have "q ∧ r" by (rule mp)
thus "q" by (rule conjunct1)
qed
next
show "p ⟶ r"
proof
assume "p"
with assms have "q ∧ r" by (rule mp)
thus "r" by (rule conjunct2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua
cammonagu chrgencar pabbergue gleherlop antramhur enrparalv juacanrod
hugrubsan alikan aribatval*)
lemma ejercicio_21:
assumes 1: "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume 2: "p ∧ q"
have 3: "p" using 2 by (rule conjunct1)
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 by (rule conjunct2)
show "r" using 4 5 by (rule mp)
qed
(* benber *)
lemma ejercicio_21_1:
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof
assume "p ∧ q"
hence "p" by (rule conjunct1)
with `p ⟶ (q ⟶ r)` have "q ⟶ r" by (rule mp)
moreover from `p ∧ q` have "q" by (rule conjunct2)
ultimately show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua
chrgencar pabbergue gleherlop antramhur enrparalv juacanrod hugrubsan
alikan aribatval*)
lemma ejercicio_22:
assumes 1: "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume 2: "p"
show "q ⟶ r"
proof (rule impI)
assume 3: "q"
have 4: "p ∧ q" using 2 3 by (rule conjI)
show "r" using 1 4 by (rule mp)
qed
qed
(* benber cammonagu *)
lemma ejercicio_22_1:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof
assume "p"
show "q ⟶ r"
proof
assume "q"
with `p` have "p ∧ q" by (rule conjI)
with `p ∧ q ⟶ r` show "r" by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua
chrgencar pabbergue gleherlop antramhur enrparalv juacanrod hugrubsan
alikan aribatval*)
lemma ejercicio_23:
assumes 1: "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume 2: "p ∧ q"
have 3: "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using 2 by (rule conjunct2)
qed
show "r" using 1 3 by (rule mp)
qed
(* benber cammonagu *)
lemma ejercicio_23_1:
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof
assume "p ∧ q"
hence "q" by (rule conjunct2)
hence "p ⟶ q" by (rule impI)
with `(p ⟶ q) ⟶ r` show "r" by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 marfruman1 alfmarcua
chrgencar pabbergue gleherlop antramhur enrparalv hugrubsan juacanrod
cammonagu alikan aribatval*)
lemma ejercicio_24:
assumes 1: "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof (rule impI)
assume 2: "p ⟶ q"
have 3: "p" using 1 by (rule conjunct1)
have 4: "q ⟶ r" using 1 by (rule conjunct2)
have 5: "q" using 2 3 by (rule mp)
show 6: "r" using 4 5 by (rule mp)
qed
(* benber *)
lemma ejercicio_24_1:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof
have "q ⟶ r" using assms by (rule conjunct2)
assume "p ⟶ q"
moreover have "p" using assms by (rule conjunct1)
ultimately have "q" by (rule mp)
with `q ⟶ r` show r by (rule mp)
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 benber cammonagu raffergon2 marfruman1
alfmarcua chrgencar gleherlop pabbergue antramhur enrparalv juacanrod
hugrubsan alikan aribatval*)
lemma ejercicio_25:
assumes "p"
shows "p ∨ q"
using assms(1) by (rule disjI1)
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 benber cammonagu marfruman1 alfmarcua
chrgencar pabbergue gleherlop antramhur enrparalv juacanrod hugrubsan
alikan aribatval*)
lemma ejercicio_26:
assumes "q"
shows "p ∨ q"
using assms(1) by (rule disjI2)
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 marfruman1 chrgencar
pabbergue antramhur enrparalv juacanrod hugrubsan cammonagu alikan aribatval*)
lemma ejercicio_27:
assumes 1: "p ∨ q"
shows "q ∨ p"
using 1 proof (rule disjE)
assume 2: "p" thus "q ∨ p" by (rule disjI2)
next
assume 3: "q" thus "q ∨ p" by (rule disjI1)
qed
(* benber alfmarcua gleherlop *)
lemma ejercicio_27_1:
assumes "p ∨ q"
shows "q ∨ p"
proof -
have "p ∨ q" using assms .
moreover have "p ⟹ q ∨ p" by (rule disjI2)
moreover have "q ⟹ q ∨ p" by (rule disjI1)
ultimately show "q ∨ p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 raffergon2 marfruman1 chrgencar
gleherlop alfmarcua pabbergue antramhur enrparalv juacanrod hugrubsan
cammonagu alikan aribatval*)
lemma ejercicio_28:
assumes 1: "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof (rule impI)
assume 2: "p ∨ q" show "p ∨ r" using 2
proof (rule disjE)
assume 3: p thus "p ∨ r" by (rule disjI1)
next
assume 4: q have r using 1 4 by (rule mp)
thus "p ∨ r" by (rule disjI2)
qed
qed
(* benber *)
lemma ejercicio_28_1:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof
assume "p ∨ q"
moreover have "p ⟹ p ∨ r" by (rule disjI1)
moreover have "q ⟹ p ∨ r"
proof (rule disjI2)
assume "q"
with `q ⟶ r` show "r" by (rule mp)
qed
ultimately show "p ∨ r" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
(* pabalagon juacanrod marfruman1 *)
lemma ejercicio_29:
assumes 1: "p ∨ p"
shows "p"
using 1 proof (rule disjE)
assume "p" thus "p" .
next
assume "p" thus "p" .
qed
(* benber manperjim cammonagu josgomrom4 raffergon2 chrgencar alfmarcua
gleherlop pabbergue antramhur enrparalv hugrubsan alikan aribatval*)
lemma ejercicio_29_1:
assumes "p ∨ p"
shows "p"
using assms by (rule disjE)
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
(* pabalagon manperjim benber josgomrom4 raffergon2 marfruman1
chrgencar alfmarcua pabbergue gleherlop antramhur enrparalv hugrubsan
juacanrod cammonagu alikan aribatval*)
lemma ejercicio_30:
assumes "p"
shows "p ∨ p"
using assms(1) by (rule disjI1)
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 alfmarcua pabbergue
gleherlop antramhur enrparalv juacanrod hugrubsan alikan aribatval*)
lemma ejercicio_31:
assumes 1: "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r" (is "?R")
using 1 proof (rule disjE)
assume "p" hence "p ∨ q" by (rule disjI1)
thus ?R by (rule disjI1)
next
assume "q ∨ r" thus ?R
proof (rule disjE)
assume "q" hence "p ∨ q" by (rule disjI2)
thus "(p ∨ q) ∨ r" by (rule disjI1)
next
assume "r" thus ?thesis by (rule disjI2)
qed
qed
(* benber cammonagu *)
lemma ejercicio_31_1:
assumes "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
proof -
have "p ∨ (q ∨ r)" using assms .
moreover {
assume "p"
hence "p ∨ q" by (rule disjI1)
hence "(p ∨ q) ∨ r" by (rule disjI1)
}
moreover {
assume "q ∨ r"
moreover {
assume "q"
hence "p ∨ q" by (rule disjI2)
hence "(p ∨ q) ∨ r" by (rule disjI1)
}
moreover {
assume "r"
hence "(p ∨ q) ∨ r" by (rule disjI2)
}
ultimately have "(p ∨ q) ∨ r" by (rule disjE)
}
ultimately show "(p ∨ q) ∨ r" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 alfmarcua gleherlop
pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*)
lemma ejercicio_32:
assumes 1: "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
using 1 proof (rule disjE)
assume "p ∨ q" thus ?thesis
proof (rule disjE)
assume p thus ?thesis by (rule disjI1)
next
assume q hence "q ∨ r" by (rule disjI1)
thus ?thesis by (rule disjI2)
qed
next
assume r hence "q ∨ r" by (rule disjI2)
thus ?thesis by (rule disjI2)
qed
(* benber cammonagu *)
lemma ejercicio_32_1:
assumes "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
proof -
have "(p ∨ q) ∨ r" using assms .
moreover {
assume "p ∨ q"
moreover {
assume "p"
hence ?thesis by (rule disjI1)
}
moreover {
assume "q"
hence "q ∨ r" by (rule disjI1)
hence ?thesis by (rule disjI2)
}
ultimately have ?thesis by (rule disjE)
}
moreover {
assume "r"
hence "q ∨ r" by (rule disjI2)
hence ?thesis by (rule disjI2)
}
ultimately show ?thesis by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 chrgencar gleherlop
alfmarcua pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*)
lemma ejercicio_33:
assumes 1: "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof -
have 2: p using 1 by (rule conjunct1)
show ?thesis
proof (rule disjE)
assume 3: q have "p ∧ q" using 2 3 by (rule conjI)
thus ?thesis by (rule disjI1)
next
assume 4: r have "p ∧ r" using 2 4 by (rule conjI)
thus ?thesis by (rule disjI2)
next
show "q ∨ r" using 1 by (rule conjunct2)
qed
qed
(* benber cammonagu *)
lemma ejercicio_33_1:
assumes "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof -
have "p" using assms by (rule conjunct1)
have "q ∨ r" using assms by (rule conjunct2)
moreover {
assume "q"
with `p` have "p ∧ q" by (rule conjI)
hence ?thesis by (rule disjI1)
}
moreover {
assume "r"
with `p` have "p ∧ r" by (rule conjI)
hence ?thesis by (rule disjI2)
}
ultimately show ?thesis by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 chrgencar alfmarcua
gleherlop pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*)
lemma ejercicio_34:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
using assms(1) proof (rule disjE)
assume 2: "p ∧ q" hence q by (rule conjunct2)
hence 3: "q ∨ r" by (rule disjI1)
have p using 2 by (rule conjunct1)
thus ?thesis using 3 by (rule conjI)
next
assume 4: "p ∧ r" hence r by (rule conjunct2)
hence 5: "q ∨ r" by (rule disjI2)
have p using 4 by (rule conjunct1)
thus ?thesis using 5 by (rule conjI)
qed
(* benber cammonagu *)
lemma ejercicio_34_1:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
proof -
have "(p ∧ q) ∨ (p ∧ r)" using assms .
moreover {
assume "p ∧ q"
hence "p" by (rule conjunct1)
moreover {
have "q" using `p ∧ q` by (rule conjunct2)
hence "q ∨ r" by (rule disjI1)
}
ultimately have ?thesis by (rule conjI)
}
moreover {
assume "p ∧ r"
hence "p" by (rule conjunct1)
moreover {
have "r" using `p ∧ r` by (rule conjunct2)
hence "q ∨ r" by (rule disjI2)
}
ultimately have ?thesis by (rule conjI)
}
ultimately show ?thesis by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 chrgencar alfmarcua
gleherlop pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*)
lemma ejercicio_35:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
using assms(1) proof (rule disjE)
assume 1: p hence 2: "p ∨ r" by (rule disjI1)
have "p ∨ q" using 1 by (rule disjI1)
thus ?thesis using 2 by (rule conjI)
next
assume 3: "q ∧ r" hence r by (rule conjunct2)
hence 4: "p ∨ r" by (rule disjI2)
have q using 3 by (rule conjunct1)
hence "p ∨ q" by (rule disjI2)
thus ?thesis using 4 by (rule conjI)
qed
(* benber cammonagu *)
lemma ejercicio_35_1:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
proof -
have "p ∨ (q ∧ r)" using assms .
moreover {
assume "p"
hence "p ∨ q" by (rule disjI1)
moreover have "p ∨ r" using `p` by (rule disjI1)
ultimately have ?thesis by (rule conjI)
}
moreover {
assume "q ∧ r"
{
have "q" using `q ∧ r` by (rule conjunct1)
hence "p ∨ q" by (rule disjI2)
}
moreover {
have "r" using `q ∧ r` by (rule conjunct2)
hence "p ∨ r" by (rule disjI2)
}
ultimately have ?thesis by (rule conjI)
}
ultimately show ?thesis by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 chrgencar alfmarcua
gleherlop pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*)
lemma ejercicio_36:
assumes 1: "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof -
have 2: "p ∨ q" using 1 by (rule conjunct1)
have 3: "p ∨ r" using 1 by (rule conjunct2)
show ?thesis using 2
proof (rule disjE)
assume p thus ?thesis by (rule disjI1)
next
assume 4: q show ?thesis using 3
proof (rule disjE)
assume p thus ?thesis by (rule disjI1)
next
assume 5: r have "q ∧ r" using 4 5 by (rule conjI)
thus ?thesis by (rule disjI2)
qed
qed
qed
(* benber cammonagu *)
lemma ejercicio_36_1:
assumes "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof -
have "p ∨ q" using assms by (rule conjunct1)
moreover {
assume "p"
hence ?thesis by (rule disjI1)
}
moreover {
assume "q"
have "p ∨ r" using assms by (rule conjunct2)
moreover {
assume "p"
hence ?thesis by (rule disjI1)
}
moreover {
assume "r"
with `q` have "q ∧ r" by (rule conjI)
hence ?thesis by (rule disjI2)
}
ultimately have ?thesis by (rule disjE)
}
ultimately show ?thesis by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 alfmarcua gleherlop
pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*)
lemma ejercicio_37:
assumes 1: "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof (rule impI)
have 2: "p ⟶ r" using 1 by (rule conjunct1)
have 3: "q ⟶ r" using 1 by (rule conjunct2)
assume 4: "p ∨ q" show "r" using 4
proof (rule disjE)
assume 5: "p" show "r" using 2 5 by (rule mp)
next
assume 6: "q" show "r" using 3 6 by (rule mp)
qed
qed
(* benber cammonagu *)
lemma ejercicio_37_1:
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof
assume "p ∨ q"
moreover {
have "p ⟶ r" using assms by (rule conjunct1)
moreover assume "p"
ultimately have "r" by (rule mp)
}
moreover {
have "q ⟶ r" using assms by (rule conjunct2)
moreover assume "q"
ultimately have "r" by (rule mp)
}
ultimately show "r" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 alfmarcua gleherlop
pabbergue antramhur enrparalv juacanrod hugrubsan alikan aribatval*)
lemma ejercicio_38:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof (rule conjI)
show "p ⟶ r"
proof (rule impI)
assume "p" hence 1: "p ∨ q" by (rule disjI1)
show "r" using assms(1) 1 by (rule mp)
qed
next
show "q ⟶ r"
proof (rule impI)
assume q hence 2: "p ∨ q" by (rule disjI2)
show r using assms(1) 2 by (rule mp)
qed
qed
(* benber cammonagu*)
lemma ejercicio_38_1:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof
show "p ⟶ r"
proof
assume "p"
hence "p ∨ q" by (rule disjI1)
with assms show "r" by (rule mp)
qed
next
show "q ⟶ r"
proof
assume "q"
hence "p ∨ q" by (rule disjI2)
with assms show "r" by (rule mp)
qed
qed
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
(* pabalagon manperjim benber josgomrom4 raffergon2 gleherlop
marfruman1 chrgencar alfmarcua pabbergue enrparalv juacanrod
hugrubsan cammonagu alikan aribatval*)
lemma ejercicio_39:
assumes "p"
shows "¬¬p"
using assms(1) by (rule notnotI)
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 alfmarcua pabbergue
gleherlop juacanrod enrparalv hugrubsan alikan chrgencar aribatval*)
lemma ejercicio_40:
assumes 1: "¬p"
shows "p ⟶ q"
proof (rule impI)
assume 2: p show q using 1 2 by (rule notE)
qed
(* benber cammonagu *)
lemma ejercicio_40_1:
assumes "¬p"
shows "p ⟶ q"
proof
assume "p"
with `¬p` show "q" by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
(* pabalagon manperjim raffergon2 josgomrom4 marfruman1 alfmarcua
pabbergue gleherlop enrparalv juacanrod hugrubsan alikan chrgencar aribatval*)
lemma ejercicio_41:
assumes 1: "p ⟶ q"
shows "¬q ⟶ ¬p"
proof (rule impI)
assume 2: "¬q" show "¬p" using 1 2 by (rule mt)
qed
(* benber cammonagu *)
lemma ejercicio_41_1:
assumes "p ⟶ q"
shows "¬q ⟶ ¬p"
proof
assume "¬q"
with `p ⟶ q` show "¬p" by (rule mt)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
(* pabalagon manperjim raffergon2 josgomrom4 marfruman1 alfmarcua
pabbergue gleherlop enrparalv juacanrod hugrubsan chrgencar alikan aribatval*)
lemma ejercicio_42:
assumes "p∨q"
"¬q"
shows "p"
using assms(1) proof (rule disjE)
assume "p" thus "p" .
next
assume 2: "q" show "p" using assms(2) 2 by (rule notE)
qed
(* benber cammonagu *)
lemma ejercicio_42_1:
assumes "p∨q"
"¬q"
shows "p"
proof -
note `p ∨ q`
moreover have "p ⟹ p" .
moreover {
assume "q"
with `¬q` have "p" by (rule notE)
}
ultimately show "p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 43. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
(* pabalagon manperjim raffergon2 josgomrom4 marfruman1 alfmarcua
pabbergue gleherlop chrgencar enrparalv juacanrod hugrubsan alikan aribatval*)
lemma ejercicio_43:
assumes "p ∨ q"
"¬p"
shows "q"
using assms(1) proof (rule disjE)
assume 1: "p" show "q" using assms(2) 1 by (rule notE)
next
assume "q" thus "q" .
qed
(* benber cammonagu*)
lemma ejercicio_43_1:
assumes "p ∨ q"
"¬p"
shows "q"
proof -
note `p ∨ q`
moreover {
assume "p"
with `¬p` have "q" by (rule notE)
}
moreover have "q ⟹ q" .
ultimately show "q" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 44. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
(* pabalagon manperjim gleherlop chrgencar josgomrom4 marfruman1 pabbergue
juacanrod hugrubsan alikan aribatval*)
lemma ejercicio_44:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
proof (rule notI)
assume 1: "¬p ∧ ¬q" hence 2: "¬p" by (rule conjunct1)
have 3: "¬q" using 1 by (rule conjunct2)
show "False"
using assms(1) proof (rule disjE)
assume 4: "p" show ?thesis using 2 4 by (rule notE)
next
assume 5: "q" show ?thesis using 3 5 by (rule notE)
qed
qed
(* benber alfmarcua cammonagu *)
lemma ejercicio_44_1:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
proof
assume "¬p ∧ ¬q"
note `p ∨ q`
moreover {
from `¬p ∧ ¬q` have "¬p" by (rule conjunct1)
moreover assume "p"
ultimately have "False" by (rule notE)
}
moreover {
from `¬p ∧ ¬q` have "¬q" by (rule conjunct2)
moreover assume "q"
ultimately have "False" by (rule notE)
}
ultimately show "False" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 gleherlop pabbergue
juacanrod hugrubsan alikan chrgencar aribatval*)
lemma ejercicio_45:
assumes 1: "p ∧ q"
shows "¬(¬p ∨ ¬q)"
proof (rule notI)
assume 2: "¬p ∨ ¬q" have 3: "p" using 1 by (rule conjunct1)
have 4: "q" using 1 by (rule conjunct2)
show "False" using 2
proof (rule disjE)
assume "¬p" thus ?thesis using 3 by (rule notE)
next
assume "¬q" thus ?thesis using 4 by (rule notE)
qed
qed
(* benber alfmarcua cammonagu *)
lemma ejercicio_45_1:
assumes "p ∧ q"
shows "¬(¬p ∨ ¬q)"
proof
assume "¬p ∨ ¬q"
moreover {
assume "¬p"
moreover have "p" using `p ∧ q` by (rule conjunct1)
ultimately have "False" by (rule notE)
}
moreover {
assume "¬q"
moreover have "q" using `p ∧ q` by (rule conjunct2)
ultimately have "False" by (rule notE)
}
ultimately show False by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 gleherlop pabbergue
juacanrod hugrubsan alikan chrgencar aribatval*)
lemma ejercicio_46:
assumes 1: "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof (rule conjI)
show "¬p"
proof (rule notI)
assume p hence 2: "p ∨ q" by (rule disjI1)
show False using 1 2 by (rule notE)
qed
show "¬q"
proof (rule notI)
assume q hence 3: "p ∨ q" by (rule disjI2)
show False using 1 3 by (rule notE)
qed
qed
(* benber cammmonagu *)
lemma ejercicio_46_1:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof
show "¬p"
proof (rule ccontr)
assume "¬¬p"
hence "p" by (rule notnotD)
hence "p ∨ q" by (rule disjI1)
with assms show "False" by (rule notE)
qed
next
show "¬q"
proof (rule ccontr)
assume "¬¬q"
hence "q" by (rule notnotD)
hence "p ∨ q" by (rule disjI2)
with assms show "False" by (rule notE)
qed
qed
(* alfmarcua *)
lemma ejercicio_46_2:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof (rule conjI)
have "p ⟹ p ∨ q" by (rule disjI1)
then have "p ⟶ p ∨ q" by (rule impI)
then show "¬ p" using assms by (rule mt)
next
have "q ⟹ p ∨ q" by (rule disjI2)
then have "q ⟶ p ∨ q" by (rule impI)
then show "¬ q" using assms by (rule mt)
qed
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 pabbregue juacanrod
hugrubsan alikan aribatval*)
lemma ejercicio_47:
assumes 1: "¬p ∧ ¬q"
shows "¬(p ∨ q)"
proof (rule notI)
have 2: "¬p" using 1 by (rule conjunct1)
have 3: "¬q" using 1 by (rule conjunct2)
assume 4: "p ∨ q"
show False
using 4 proof (rule disjE)
assume 5: p show ?thesis using 2 5 by (rule notE)
next
assume 6: q show ?thesis using 3 6 by (rule notE)
qed
qed
(* benber gleherlop chrgencar cammonagu*)
lemma ejercicio_47_1:
assumes "¬p ∧ ¬q"
shows "¬(p ∨ q)"
proof
assume "p ∨ q"
hence "¬(¬p ∧ ¬q)" by (rule ejercicio_44_1)
thus "False" using assms by (rule notE)
qed
(* alfmarcua *)
lemma ejercicio_47_2:
assumes "¬p ∧ ¬q"
shows "¬(p ∨ q)"
proof (rule notI)
have "¬ p" using assms by (rule conjunct1)
have "¬ q" using assms by (rule conjunct2)
assume "p ∨ q"
then have "q" using `¬ p` by (rule ejercicio_43)
show False using `¬ q` `q` by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 pabbergue juacanrod
hugrubsan alikan aribatval*)
lemma ejercicio_48:
assumes 1: "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof (rule notI)
assume 2: "p ∧ q" hence 3: p by (rule conjunct1)
have 4: q using 2 by (rule conjunct2)
show False
using 1 proof (rule disjE)
assume "¬p" thus ?thesis using 3 by (rule notE)
next
assume "¬q" thus ?thesis using 4 by (rule notE)
qed
qed
(* benber alfmarcua gleherlop chrgencar cammonagu *)
lemma ejercicio_48_1:
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof
assume "p ∧ q"
hence "¬(¬p ∨ ¬q)" by (rule ejercicio_45_1)
thus "False" using assms by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 alfmarcu gleherlop
hugrubsan juacanrod cammonagu alikan chrgencar aribatval*)
lemma ejercicio_49:
"¬(p ∧ ¬p)"
proof (rule notI)
assume 1: "p ∧ ¬p" hence 2: p by (rule conjunct1)
have "¬p" using 1 by (rule conjunct2)
thus "False" using 2 by (rule notE)
qed
(* benber *)
lemma ejercicio_49_1:
"¬(p ∧ ¬p)"
proof
assume "p ∧ ¬p"
hence "¬p" by (rule conjunct2)
moreover have "p" using `p ∧ ¬p` by (rule conjunct1)
ultimately show "False" by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
(* pabalagon manperjim raffergon2 josgomrom4 marfruman1 gleherlop
alfmarcua enrparalv pabbergue juacanrod hugrubsan alikan chrgencar aribatval*)
lemma ejercicio_50:
assumes 1: "p ∧ ¬p"
shows "q"
proof (rule notE)
show p using 1 by (rule conjunct1)
show "¬p" using 1 by (rule conjunct2)
qed
(* benber cammonagu*)
lemma ejercicio_50_1:
assumes "p ∧ ¬p"
shows "q"
proof -
have "¬p" using `p ∧ ¬p` by (rule conjunct2)
moreover have "p" using `p ∧ ¬p` by (rule conjunct1)
ultimately show "q" by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
(* pabalagon manperjim benber raffergon2 josgomrom4 marfruman1 gleherlop
alfmarcua enrparalv pabbergue juacanrod hugrubsan cammmonagu alikan
chrgencar aribatval*)
lemma ejercicio_51:
assumes "¬¬p"
shows "p"
using assms(1) by (rule notnotD)
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 juacanrod pabbergue alikan aribatval*)
lemma ejercicio_52:
"p ∨ ¬p"
proof (rule ccontr)
assume 1: "¬(p ∨ ¬p)"
have 2: "¬p" proof (rule notI)
assume p hence 3: "p ∨ ¬p" by (rule disjI1)
show "False" using 1 3 by (rule notE)
qed
have 4: "p ∨ ¬p" using 2 by (rule disjI2)
show "False" using 1 4 by (rule notE)
qed
(* benber cammonagu *)
lemma ejercicio_52_1:
"p ∨ ¬p"
proof (rule ccontr)
assume "¬ (p ∨ ¬ p)"
hence "¬p ∧ ¬¬p" by (rule ejercicio_46_1)
hence "¬p" by (rule conjunct1)
moreover {
have "¬¬p" using `¬p ∧ ¬¬p` by (rule conjunct2)
hence "p" by (rule notnotD)
}
ultimately show "False" by (rule notE)
qed
(* alfmarcua *)
lemma ejercicio_52_2:
"p ∨ ¬p"
proof (rule ccontr)
assume "¬ (p ∨ ¬ p)"
then have "¬ p ∧ ¬¬ p" by (rule ejercicio_46)
then show False by (rule ejercicio_50)
qed
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 alfmarcua gleherlop
juacanrod pabbergue alikan chrgencar aribatval*)
lemma ejercicio_53:
"((p ⟶ q) ⟶ p) ⟶ p"
proof (rule impI)
assume 1: "(p ⟶ q) ⟶ p"
show p proof (rule ccontr)
assume 2: "¬p"
have 3: "¬(p ⟶ q)" using 1 2 by (rule mt)
have 4: "p ⟶ q" proof (rule impI)
assume 5: p show q using 2 5 by (rule notE)
qed
show False using 3 4 by (rule notE)
qed
qed
(* benber cammonagu *)
lemma ejercicio_53_1:
"((p ⟶ q) ⟶ p) ⟶ p"
proof
assume "(p ⟶ q) ⟶ p"
have "p ∨ ¬p" by (rule ejercicio_52_1)
moreover have "p ⟹ p" .
moreover {
assume "¬ p"
hence "p ⟶ q" by (rule ejercicio_40_1)
with `(p ⟶ q) ⟶ p` have "p" by (rule mp)
}
ultimately show "p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 gleherlop juacanrod
pabbergue chrgencar alikan aribatval*)
lemma ejercicio_54:
assumes 1: "¬q ⟶ ¬p"
shows "p ⟶ q"
proof (rule impI)
assume 2: "p" hence 3: "¬¬p" by (rule notnotI)
have "¬¬q" using 1 3 by (rule mt)
thus "q" by (rule notnotD)
qed
(* benber alfmarcua cammonagu *)
lemma ejercicio_54_1:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof
assume "p"
hence "¬¬p" by (rule notnotI)
with assms have "¬¬q" by (rule mt)
thus "q" by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
(* pabalagon marfruman1*)
lemma ejercicio_55:
assumes 1: "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof (rule ccontr)
assume 2: "¬(p ∨ q)"
have 3: "p"
proof (rule ccontr)
assume 4: "¬p"
have 5: "q"
proof (rule ccontr)
assume 6: "¬q" have 7: "¬p ∧ ¬q" using 4 6 by (rule conjI)
show False using 1 7 by (rule notE)
qed
have 8: "p ∨ q" using 5 by (rule disjI2)
show False using 2 8 by (rule notE)
qed
have 9: "p ∨ q" using 3 by (rule disjI1)
show False using 2 9 by (rule notE)
qed
(* benber alfmarcua josgomrom4 manperjim pabbergue juacanrod cammonagu chrgencar alikan aribatval*)
lemma ejercicio_55_1:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof (rule ccontr)
assume "¬(p ∨ q)"
hence "¬p ∧ ¬q" by (rule ejercicio_46_1)
with assms show False by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 gleherlop juacanrod
pabbergue chrgencar alikan aribatval*)
lemma ejercicio_56:
assumes 1: "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof (rule conjI)
show 3: p
proof (rule ccontr)
assume "¬p" hence 4: "¬p ∨ ¬q" by (rule disjI1)
show False using 1 4 by (rule notE)
qed
show 5: q
proof (rule ccontr)
assume "¬q" hence 6: "¬p ∨ ¬q" by (rule disjI2)
show False using 1 6 by (rule notE)
qed
qed
(* benber alfmarcua cammonagu *)
lemma ejercicio_56_1:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof -
have "¬¬p ∧ ¬¬q" using assms by (rule ejercicio_46_1)
hence "¬¬p" by (rule conjunct1)
hence "p" by (rule notnotD)
moreover {
have "¬¬q" using `¬¬p ∧ ¬¬q` by (rule conjunct2)
hence "q" by (rule notnotD)
}
ultimately show "p ∧ q" by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
(* pabalagon manperjim marfruman1 josgomrom4 chrgencar gleherlop
juacanroz pabbergue alikan *)
lemma ejercicio_57:
assumes 1: "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof (rule ccontr)
assume 2: "¬(¬p ∨ ¬q)"
show False using 1
proof (rule notE)
show 3: "p ∧ q"
proof (rule conjI)
show p
proof (rule ccontr)
assume "¬p" hence 4: "¬p ∨ ¬q" by (rule disjI1)
show False using 2 4 by (rule notE)
qed
next
show q
proof (rule ccontr)
assume "¬q" hence 5: "¬p ∨ ¬q" by (rule disjI2)
show False using 2 5 by (rule notE)
qed
qed
qed
qed
(* benber alfmarcua cammonagu *)
lemma ejercicio_57_1:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof (rule ccontr)
assume "¬(¬p ∨ ¬q)"
hence "p ∧ q" by (rule ejercicio_56_1)
with assms show "False" by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
(* pabalagon manperjim josgomrom4 marfruman1 juacanrod pabbergue alikan *)
lemma ejercicio_58:
"(p ⟶ q) ∨ (q ⟶ p)"
proof -
have "(p ⟶ q) ∨ ¬(p ⟶ q)" proof (rule ccontr)
assume 1: "¬((p ⟶ q) ∨ ¬(p ⟶ q))"
have 2: "¬(p ⟶ q)" proof (rule notI)
assume "p ⟶ q"
hence 3: "(p ⟶ q) ∨ ¬(p ⟶ q)" by (rule disjI1)
show False using 1 3 by (rule notE)
qed
hence 4: "(p ⟶ q) ∨ ¬(p ⟶ q)" by (rule disjI2)
show "False" using 1 4 by (rule notE)
qed
thus ?thesis proof (rule disjE)
assume "p ⟶ q" thus ?thesis by (rule disjI1)
next
assume 1: "¬(p ⟶ q)"
have "q ⟶ p" proof (rule impI)
assume 2: q
have 3: "p ⟶ q" proof (rule impI)
assume p show q using 2 .
qed
show p using 1 3 by (rule notE)
qed
thus ?thesis by (rule disjI2)
qed
qed
(* pabalagon gleherlop chrgencar *)
lemma ejercicio_58_2:
"(p ⟶ q) ∨ (q ⟶ p)"
proof (rule ccontr)
assume 1: "¬((p ⟶ q) ∨ (q ⟶ p))"
hence 1: "(p ∧ ¬q) ∧ (q ∧ ¬p)" by simp
hence "p ∧ ¬q" ..
hence 2: p ..
have "q ∧ ¬p" using 1 ..
hence 3: "¬p" ..
show False using 3 2 by (rule notE)
qed
(* benber cammonagu *)
lemma ejercicio_58_1:
"(p ⟶ q) ∨ (q ⟶ p)"
proof (rule ccontr)
assume "¬ ((p ⟶ q) ∨ (q ⟶ p))"
hence 1: "¬(p ⟶ q) ∧ ¬(q ⟶ p)" by (rule ejercicio_46_1)
have "p ∨ ¬p" by (rule ejercicio_52_1)
moreover {
assume "p"
hence "q ⟶ p" by (rule ejercicio_7_1)
have "¬(q ⟶ p)" using 1 by (rule conjunct2)
hence "False" using `q ⟶ p` by (rule notE)
}
moreover {
assume "¬p"
hence "p ⟶ q" by (rule ejercicio_40_1)
have "¬(p ⟶ q)" using 1 by (rule conjunct1)
hence "False" using `p ⟶ q` by (rule notE)
}
ultimately show "False" by (rule disjE)
moreover {
assume "p"
hence "q ⟶ p" by (rule ejercicio_7_1)
have "¬(q ⟶ p)" using 1 by (rule conjunct2)
hence "False" using `q ⟶ p` by (rule notE)
}
qed
(* alfmarcua *)
lemma ejercicio_58_3:
"(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjE)
show "p ∨ ¬ p" by (rule ejercicio_52)
next
assume "¬p"
then have "p ⟶ q" by (rule ejercicio_40)
then show ?thesis by (rule disjI1)
next
assume "p"
then have "q ⟶ p" by (rule ejercicio_7)
then show ?thesis by (rule disjI2)
qed
end