Acciones

Diferencia entre revisiones de «Relación 5»

De Razonamiento automático (2018-19)

Línea 333: Línea 333:
 
*}
 
*}
  
theorem "hd (preOrden a) = last (postOrden a)"
+
(* pabalagon *)
oops
+
theorem hdPreOrden_lastPostOrden:
 +
  "hd (preOrden a) = last (postOrden a)" (is "?P a")
 +
proof (induct a)
 +
  fix x
 +
  show "?P (H x)" by simp
 +
next
 +
  fix x::'a
 +
  fix i d
 +
  have "hd (preOrden (N x i d)) = hd (x # preOrden i @ preOrden d)" by simp
 +
  also have "... = x" by simp
 +
  also have "... = last [x]" by simp
 +
  also have "... = last (postOrden i @ postOrden d @ [x])" by simp
 +
  finally show "?P (N x i d)" by simp
 +
qed
  
 
text {*   
 
text {*   
Línea 343: Línea 356:
 
*}
 
*}
  
theorem "hd (preOrden a) = raiz a"
+
(* pabalagon *)
oops
+
theorem hdPreOrden_raiz: "hd (preOrden a) = raiz a" (is "?P a")
 +
proof (induct a)
 +
  fix x
 +
  show "?P (H x)" by simp
 +
next
 +
  fix x::'a
 +
  fix i d
 +
  have "hd (preOrden (N x i d)) = hd (x # preOrden i @ preOrden d)" by simp
 +
  also have "... = x" by simp
 +
  finally show "?P (N x i d)" by (simp only: raiz.simps(2))
 +
qed
  
 
text {*   
 
text {*   
Línea 353: Línea 376:
 
*}
 
*}
  
 +
(* pabalagon *)
 
theorem "hd (inOrden a) = raiz a"
 
theorem "hd (inOrden a) = raiz a"
oops
+
  quickcheck
 +
(*
 +
Quickcheck found a counterexample:
 +
  a = N a⇩1 (H a⇩2) (H a⇩1)
 +
Evaluated terms:
 +
  hd (inOrden a) = a⇩2
 +
  raiz a = a⇩1 *)
 +
  oops
  
 
text {*   
 
text {*   
Línea 363: Línea 394:
 
*}
 
*}
  
 +
(* pabalagon *)
 
theorem "last (postOrden a) = raiz a"
 
theorem "last (postOrden a) = raiz a"
oops
+
proof -
 +
  have "last (postOrden a) = hd (preOrden a)"
 +
    by (simp add: hdPreOrden_lastPostOrden)
 +
  also have "... = raiz a" by (simp add: hdPreOrden_raiz)
 +
  finally show "?thesis" .
 +
qed
  
 
end
 
end
 
</source>
 
</source>

Revisión del 21:09 18 dic 2018

chapter {* R5: Recorridos de árboles *}

theory R5_Recorridos_de_arboles
imports Main 
begin 

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 1. Definir el tipo de datos arbol para representar los
  árboles binarios que tiene información en los nodos y en las hojas. 
  Por ejemplo, el árbol
          e
         / \
        /   \
       c     g
      / \   / \
     a   d f   h 
  se representa por "N e (N c (H a) (H d)) (N g (H f) (H h))".
  --------------------------------------------------------------------- 
*}

datatype 'a arbol = H "'a" | N "'a" "'a arbol" "'a arbol"

value "N e (N c (H a) (H d)) (N g (H f) (H h))" 

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 2. Definir la función 
     preOrden :: "'a arbol ⇒ 'a list"
  tal que (preOrden a) es el recorrido pre orden del árbol a. Por
  ejemplo, 
     preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = [e,c,a,d,g,f,h] 
  --------------------------------------------------------------------- 
*}

(* pabalagon raffergon2 *)
fun preOrden :: "'a arbol ⇒ 'a list" where
  "preOrden (H x) = [x]" |
  "preOrden (N x i d) = x # preOrden i @ preOrden d"

value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))  
      = [e,c,a,d,g,f,h]" 

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 3. Definir la función 
     postOrden :: "'a arbol ⇒ 'a list"
  tal que (postOrden a) es el recorrido post orden del árbol a. Por
  ejemplo, 
     postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = [e,c,a,d,g,f,h] 
  --------------------------------------------------------------------- 
*}

(* pabalagon raffergon2 *)
fun postOrden :: "'a arbol ⇒ 'a list" where
  "postOrden (H x) = [x]" |
  "postOrden (N x i d) = postOrden i @ postOrden d @ [x]"

value "postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
       = [a,d,c,f,h,g,e]"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 4. Definir la función 
     inOrden :: "'a arbol ⇒ 'a list"
  tal que (inOrden a) es el recorrido in orden del árbol a. Por
  ejemplo, 
     inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = [a,c,d,e,f,g,h]
  --------------------------------------------------------------------- 
*}

(* pabalagon raffergon2 *)
fun inOrden :: "'a arbol ⇒ 'a list" where
  "inOrden (H x) = [x]" |
  "inOrden (N x i d) = inOrden i @ [x] @ inOrden d"

value "inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
       = [a,c,d,e,f,g,h]"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 5. Definir la función 
     espejo :: "'a arbol ⇒ 'a arbol"
  tal que (espejo a) es la imagen especular del árbol a. Por ejemplo, 
     espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = N e (N g (H h) (H f)) (N c (H d) (H a))
  --------------------------------------------------------------------- 
*}

(* pabalagon raffergon2*)
fun espejo :: "'a arbol ⇒ 'a arbol" where
  "espejo (H x) = H x" |
  "espejo (N x i d) = N x (espejo d) (espejo i)"

value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h))) 
       = N e (N g (H h) (H f)) (N c (H d) (H a))"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 6. Demostrar que
     preOrden (espejo a) = rev (postOrden a)
  --------------------------------------------------------------------- 
*}

(* pabalagon raffergon2*)
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume H1: "?P i"
  assume H2: "?P d"
  have "preOrden (espejo (N x i d)) = 
        preOrden (N x (espejo d) (espejo i))" by simp
  also have "... = x # preOrden (espejo d) @ preOrden (espejo i)" by simp
  also have "... = x # rev (postOrden d) @ rev (postOrden i)"
    using H1 H2 by simp
  also have "... = rev (postOrden d @ [x]) @ rev (postOrden i)" by simp
  also have "... = rev (postOrden i @ postOrden d @ [x])" by simp
  finally show "?P (N x i d)" by simp
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 7. Demostrar que
     postOrden (espejo a) = rev (preOrden a)
  --------------------------------------------------------------------- 
*}

(* pabalagon *)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume H1: "?P i" and H2: "?P d"
  have "postOrden (espejo (N x i d)) =
        postOrden (N x (espejo d) (espejo i))" by simp
  also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x]"
    by simp
  also have "... = rev (preOrden d) @ rev (preOrden i) @ [x]"
    using H1 H2 by simp
  also have "... = rev (preOrden i @ preOrden d) @ rev [x]" by simp
  also have "... = rev (x # preOrden i @ preOrden d)" by simp
  finally show "?P (N x i d)" by simp
qed

(* raffergon2 *)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d 
  assume H1: "?P i"
  assume H2: "?P d"
  have "postOrden (espejo (N x i d)) = postOrden (N x (espejo d) (espejo i))" by simp
  also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x]"
    by simp
  also have "... = rev(preOrden d) @ rev (preOrden i) @ [x]"
    using H1 H2 by simp
  also have "... = rev(preOrden d) @ rev (x # preOrden i)" by simp
  also have "... = rev(x # preOrden i @ preOrden d)" by simp
  finally show "?P (N x i d)" by simp
qed


text {*  
  --------------------------------------------------------------------- 
  Ejercicio 8. Demostrar que
     inOrden (espejo a) = rev (inOrden a)
  --------------------------------------------------------------------- 
*}

(* pabalagon *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume H1: "?P i" and H2: "?P d"
  have "inOrden (espejo (N x i d)) = inOrden (N x (espejo d) (espejo i))"
    by simp
  also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i)" by simp
  also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)"
    using H1 H2 by simp
  also have "... = rev (inOrden i @ [x] @ inOrden d)" by simp
  finally show "?P (N x i d)" by simp
qed

(* raffergon2 *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a) 
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume H1: "?P i"
  assume H2: "?P d"

  have "inOrden (espejo (N x i d)) = inOrden(N x (espejo d) (espejo i))" by simp
  also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i)" by simp
  also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)"
    using H1 H2 by simp
  also have "... = rev(x # inOrden d) @ rev (inOrden i)" by simp
  also have "... = rev(inOrden i @ x # inOrden d)" by simp
  finally show "?P (N x i d)" by simp
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 9. Definir la función 
     raiz :: "'a arbol ⇒ 'a"
  tal que (raiz a) es la raiz del árbol a. Por ejemplo, 
     raiz (N e (N c (H a) (H d)) (N g (H f) (H h))) = e
  --------------------------------------------------------------------- 
*}

(* pabalagon raffergon2*)
fun raiz :: "'a arbol ⇒ 'a" where
  "raiz (H x) = x" |
  "raiz (N x i d) = x"

value "raiz (N e (N c (H a) (H d)) (N g (H f) (H h))) = e"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 10. Definir la función 
     extremo_izquierda :: "'a arbol ⇒ 'a"
  tal que (extremo_izquierda a) es el nodo más a la izquierda del árbol
  a. Por ejemplo,  
     extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h))) = a
  --------------------------------------------------------------------- 
*}

(* pabalagon raffergon2 *)
fun extremo_izquierda :: "'a arbol ⇒ 'a" where
  "extremo_izquierda (H x) = x" |
  "extremo_izquierda (N x i d) = extremo_izquierda i"

value "extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h))) = a"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 11. Definir la función 
     extremo_derecha :: "'a arbol ⇒ 'a"
  tal que (extremo_derecha a) es el nodo más a la derecha del árbol
  a. Por ejemplo,  
     extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h))) = h
  --------------------------------------------------------------------- 
*}

(* pabalagon raffergon2*)
fun extremo_derecha :: "'a arbol ⇒ 'a" where
  "extremo_derecha (H x) = x" |
  "extremo_derecha (N x i d) = extremo_derecha d"

value "extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h))) = h"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 12. Demostrar o refutar
     last (inOrden a) = extremo_derecha a
  --------------------------------------------------------------------- 
*}

(* pabalagon *)
lemma inOrdenNotNil: "inOrden a ≠ []" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  have "?P (N x i d) = ((inOrden i @ [x] @ inOrden d) ≠ [])" by simp
  also have "... = ((inOrden i ≠ []) ∨ ([x] ≠ []) ∨ (inOrden d ≠ []))" by simp
  also have "... = ([x] ≠ [])" by simp
  finally show "?P (N x i d)" by simp
qed

theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume HI: "?P d"
  have "last (inOrden (N x i d)) = last (inOrden i @ [x] @ inOrden d)" by simp
  also have "... = last (x # inOrden d)" by simp
  also have "... = last (inOrden d)" by (simp add: inOrdenNotNil)
  also have "... = extremo_derecha d" using HI by simp
  also have "... = extremo_derecha (N x i d)" by simp
  finally show "?P (N x i d)" .
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 13. Demostrar o refutar
     hd (inOrden a) = extremo_izquierda a
  --------------------------------------------------------------------- 
*}

(* pabalagon *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
  fix x::'a
  have "hd (inOrden (H x)) = hd [x]" by simp
  also have "... = x" by simp
  also have "... = extremo_izquierda (H x)" by simp
  finally show "?P (H x)" .
next
  fix x i d
  assume HI: "?P i"
  have "hd (inOrden (N x i d)) = hd (inOrden i @ [x] @ inOrden d)" by simp
  also have "... = hd ((inOrden i @ [x]) @ inOrden d)" by simp
  also have "... = hd (inOrden i)" by (simp add: inOrdenNotNil)
  also have "... = extremo_izquierda i" using HI by simp
  also have "... = extremo_izquierda (N x i d)" by simp
  finally show "?P (N x i d)" .
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 14. Demostrar o refutar
     hd (preOrden a) = last (postOrden a)
  --------------------------------------------------------------------- 
*}

(* pabalagon *)
theorem hdPreOrden_lastPostOrden: 
  "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x::'a 
  fix i d
  have "hd (preOrden (N x i d)) = hd (x # preOrden i @ preOrden d)" by simp
  also have "... = x" by simp
  also have "... = last [x]" by simp
  also have "... = last (postOrden i @ postOrden d @ [x])" by simp
  finally show "?P (N x i d)" by simp
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 15. Demostrar o refutar
     hd (preOrden a) = raiz a
  --------------------------------------------------------------------- 
*}

(* pabalagon *)
theorem hdPreOrden_raiz: "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x::'a
  fix i d
  have "hd (preOrden (N x i d)) = hd (x # preOrden i @ preOrden d)" by simp
  also have "... = x" by simp
  finally show "?P (N x i d)" by (simp only: raiz.simps(2))
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 16. Demostrar o refutar
     hd (inOrden a) = raiz a
  --------------------------------------------------------------------- 
*}

(* pabalagon *)
theorem "hd (inOrden a) = raiz a"
  quickcheck
(*
Quickcheck found a counterexample:
  a = N a⇩1 (H a⇩2) (H a⇩1)
Evaluated terms:
  hd (inOrden a) = a⇩2
  raiz a = a⇩1 *)
  oops

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 17. Demostrar o refutar
     last (postOrden a) = raiz a
  --------------------------------------------------------------------- 
*}

(* pabalagon *)
theorem "last (postOrden a) = raiz a"
proof -
  have "last (postOrden a) = hd (preOrden a)"
    by (simp add: hdPreOrden_lastPostOrden)
  also have "... = raiz a" by (simp add: hdPreOrden_raiz)
  finally show "?thesis" .
qed

end