chapter {* R3: Razonamiento sobre programas *}
theory R3_Razonamiento_sobre_programas
imports Main
begin
text {* ---------------------------------------------------------------
Ejercicio 1.1. Definir la función
sumaImpares :: nat ⇒ nat
tal que (sumaImpares n) es la suma de los n primeros números
impares. Por ejemplo,
sumaImpares 5 = 25
------------------------------------------------------------------ *}
fun sumaImpares :: "nat ⇒ nat" where
"sumaImpares 0 = 0"
| "sumaImpares (Suc n) = sumaImpares n + (2*n+1)"
text {* ---------------------------------------------------------------
Ejercicio 1.2. Escribir la demostración detallada de
sumaImpares n = n*n
------------------------------------------------------------------- *}
-- "La demostración detallada es"
(* anddonram edupalhid rafcabgon luicedval jescudero macmerflo diwu2
rafferrod cesgongut jospermon1 davperriv *)
lemma "sumaImpares n = n*n"
proof (induct n)
show "sumaImpares 0 = 0*0" by simp
next
fix n
assume HI: "sumaImpares n=n*n"
have "sumaImpares (Suc n) = sumaImpares n + (2*n+1)" by simp
also have "... = n*n + (2*n+1)" using HI by simp
finally show "sumaImpares (Suc n) =(Suc n) *(Suc n)" by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 2.1. Definir la función
sumaPotenciasDeDosMasUno :: nat ⇒ nat
tal que
(sumaPotenciasDeDosMasUno n) = 1 + 2^0 + 2^1 + 2^2 + ... + 2^n.
Por ejemplo,
sumaPotenciasDeDosMasUno 3 = 16
------------------------------------------------------------------ *}
fun sumaPotenciasDeDosMasUno :: "nat ⇒ nat" where
"sumaPotenciasDeDosMasUno 0 = 2"
| "sumaPotenciasDeDosMasUno (Suc n) =
sumaPotenciasDeDosMasUno n + 2^(n+1)"
text {* ---------------------------------------------------------------
Ejercicio 2.2. Escribir la demostración detallada de
sumaPotenciasDeDosMasUno n = 2^(n+1)
------------------------------------------------------------------- *}
(* anddonram edupalhid luicedval macmerflo jescudero diwu2 rafferrod jospermon1 davperriv *)
lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)"
proof (induct n)
show "sumaPotenciasDeDosMasUno 0 = 2^(0+1)" by simp
next
fix n
assume HI: "sumaPotenciasDeDosMasUno n = 2^(n+1)"
have "sumaPotenciasDeDosMasUno (Suc n) =
sumaPotenciasDeDosMasUno n + 2^(n+1)" by simp
also have "... = 2^(n+1) + 2^(n+1)" using HI by simp
also have "... = 2^((n+1)+1)" by simp
finally show "sumaPotenciasDeDosMasUno (Suc n) = 2^(Suc n + 1)"
by simp
qed
(* rafcabgon cesgongut *)
lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)"
proof (induct n)
show "sumaPotenciasDeDosMasUno 0 = 2^(0+1)" by simp
next
fix n
assume HI: "sumaPotenciasDeDosMasUno n = 2^(n+1)"
have "sumaPotenciasDeDosMasUno (Suc n) =
sumaPotenciasDeDosMasUno n + 2^(n+1)" by simp
also have "... = 2^(n+1) + 2^(n+1)" using HI by simp
also have "... = 2^((Suc n) + 1)" by simp
finally show "sumaPotenciasDeDosMasUno (Suc n) = 2 ^ (Suc n + 1)"
by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 3.1. Definir la función
copia :: nat ⇒ 'a ⇒ 'a list
tal que (copia n x) es la lista formado por n copias del elemento
x. Por ejemplo,
copia 3 x = [x,x,x]
------------------------------------------------------------------ *}
fun copia :: "nat ⇒ 'a ⇒ 'a list" where
"copia 0 x = []"
| "copia (Suc n) x = x # copia n x"
text {* ---------------------------------------------------------------
Ejercicio 3.2. Definir la función
todos :: ('a ⇒ bool) ⇒ 'a list ⇒ bool
tal que (todos p xs) se verifica si todos los elementos de xs cumplen
la propiedad p. Por ejemplo,
todos (λx. x>(1::nat)) [2,6,4] = True
todos (λx. x>(2::nat)) [2,6,4] = False
------------------------------------------------------------------ *}
fun todos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
"todos p [] = True"
| "todos p (x#xs) = (p x ∧ todos p xs)"
text {* ---------------------------------------------------------------
Ejercicio 3.2. Demostrar detalladamente que todos los elementos de
(copia n x) son iguales a x.
------------------------------------------------------------------- *}
(* anddonram edupalhid rafcabgon luicedval macmerflo jescudero diwu2 jospermon1 davperriv cesgongut *)
lemma "todos (λy. y=x) (copia n x)"
proof (induct n)
show "todos (λy. y=x) (copia 0 x)" by simp
next
fix n
assume HI: "todos (λy. y=x) (copia n x)"
have "todos (λy. y=x) (copia (Suc n) x) =
todos (λy. y=x) (x#(copia n x))" by simp
also have "... = todos (λy. y=x) (copia n x) " by simp
show "todos (λy. y=x) (copia (Suc n) x)" using HI by simp
qed
(* rafferrod *)
lemma "todos (λy. y=x) (copia n x)"
proof (induct n)
show "todos (λy. y=x) (copia 0 x)" by simp
next
fix n
assume HI: "todos (λy. y=x) (copia n x)"
have "todos (λy. y=x) (copia (Suc n) x) =
todos (λy. y=x) (x#(copia n x))" by simp
also have "... = (((λy. y=x) x) ∧ (todos (λy. y=x) (copia n x)))"
by simp
also have "... = True" using HI by simp
finally show "todos (λy. y=x) (copia (Suc n) x)" by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 4.1. Definir la función
factR :: nat ⇒ nat
tal que (factR n) es el factorial de n. Por ejemplo,
factR 4 = 24
------------------------------------------------------------------ *}
fun factR :: "nat ⇒ nat" where
"factR 0 = 1"
| "factR (Suc n) = Suc n * factR n"
text {* ---------------------------------------------------------------
Ejercicio 4.2. Se considera la siguiente definición iterativa de la
función factorial
factI :: "nat ⇒ nat" where
factI n = factI' n 1
factI' :: nat ⇒ nat ⇒ nat" where
factI' 0 x = x
factI' (Suc n) x = factI' n (Suc n)*x
Demostrar que, para todo n y todo x, se tiene
factI' n x = x * factR n
Indicación: La propiedad mult_Suc es
(Suc m) * n = n + m * n
Puede que se necesite desactivarla en un paso con
(simp del: mult_Suc)
------------------------------------------------------------------- *}
fun factI' :: "nat ⇒ nat ⇒ nat" where
"factI' 0 x = x"
| "factI' (Suc n) x = factI' n (x * Suc n)"
fun factI :: "nat ⇒ nat" where
"factI n = factI' n 1"
(* anddonram rafferrod *)
lemma fact: "factI' n x = x * factR n"
proof (induct n arbitrary: x)
show "⋀x. factI' 0 x = x * factR 0" by simp
next
fix n
assume HI: "⋀x. factI' n x = x * factR n"
fix x
have "factI' (Suc n) x = factI' n (x * Suc n)" by simp
also have "... = (x * Suc n) * factR n" using HI by simp
also have "... = x * (Suc n * factR n)" by (simp del:mult_Suc)
finally show "factI' (Suc n) x = x * factR (Suc n)" by simp
qed
(* edupalhid rafcabgon luicedval macmerflo diwu2 jescudero jospermon1 davperriv *)
lemma fact': "factI' n x = x * factR n"
proof (induct n arbitrary: x)
show "⋀x. factI' 0 x = x * factR 0" by simp
next
fix n
assume HI: "⋀x. factI' n x = x * factR n"
show "⋀x. factI' (Suc n) x = x * factR (Suc n)"
proof -
fix x
have "factI' (Suc n) x = factI' n (x * Suc n)" by simp
also have "... = (x * Suc n) * factR n" using HI by simp
also have "... = x * (Suc n * factR n)" by (simp del: mult_Suc)
also have "... = x * factR (Suc n)" by simp
finally show "factI' (Suc n) x = x * factR (Suc n)" by simp
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 4.3. Escribir la demostración detallada de
factI n = factR n
------------------------------------------------------------------- *}
(* anddonram edupalhid rafcabgon luicedval macmerflo diwu2 jescudero
rafferrod jospermon1 davperriv *)
corollary "factI n = factR n"
proof -
fix n
have "factI n = factI' n 1" by simp
also have "... = 1 * factR n" by (simp add:fact)
finally show "factI n = factR n" by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 5.1. Definir, recursivamente y sin usar (@), la función
amplia :: 'a list ⇒ 'a ⇒ 'a list
tal que (amplia xs y) es la lista obtenida añadiendo el elemento y al
final de la lista xs. Por ejemplo,
amplia [d,a] t = [d,a,t]
------------------------------------------------------------------ *}
fun amplia :: "'a list ⇒ 'a ⇒ 'a list" where
"amplia [] y = [y]"
| "amplia (x#xs) y = x # amplia xs y"
text {* ---------------------------------------------------------------
Ejercicio 5.2. Escribir la demostración detallada de
amplia xs y = xs @ [y]
------------------------------------------------------------------- *}
(* anddonram rafcabgon luicedval macmerflo diwu2 jescudero rafferrod jospermon1 davperriv cesgongut *)
lemma "amplia xs y = xs @ [y]"
proof (induct xs)
show "amplia [] y = [] @ [y]" by simp
next
fix a xs
assume HI: "amplia xs y = xs @ [y]"
have "amplia (a#xs) y =a # amplia xs y" by simp
also have "... = a # (xs @[y]) " using HI by simp
also have "... =(a # xs) @[y] " using HI by simp
finally show "amplia (a#xs) y= (a # xs) @[y]" by simp
qed
(* edupalhid *)
lemma "amplia xs y = xs @ [y]" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix x xs
assume HI: "?P xs"
have "amplia (x # xs) y = x # amplia xs y" by simp
also have "... = (x # xs) @ [y]" using HI by simp
finally show "?P (x#xs)" by simp
qed
end