header {* Tema 15: Razonamiento sobre programas en Isabelle *}
theory T15
imports Main
begin
text {*
En este tema se demuestra con Isabelle las propiedades de los
programas funcionales como se expone en el tema 8 del curso
"Informática" que puede leerse en
http://www.cs.us.es/~jalonso/cursos/i1m/temas/tema-8t.pdf
*}
section {* Razonamiento ecuacional *}
text {* ----------------------------------------------------------------
Ejercicio 1. Definir, por recursión, la función
longitud :: "'a list ⇒ nat" where
tal que (longitud xs) es la longitud de la listas xs. Por ejemplo,
longitud [4,2,5] = 3
------------------------------------------------------------------- *}
fun longitud :: "'a list ⇒ nat" where
"longitud [] = 0"
| "longitud (x#xs) = 1 + longitud xs"
value "longitud [4,2,5]" -- "= 3"
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar que
longitud [4,2,5] = 3
------------------------------------------------------------------- *}
lemma "longitud [4,2,5] = 3"
by simp
text {* ---------------------------------------------------------------
Ejercicio 3. Definir la función
fun intercambia :: "'a × 'b ⇒ 'b × 'a"
tal que (intercambia p) es el par obtenido intercambiando las
componentes del par p. Por ejemplo,
"intercambia (2,3) = (3,2)
------------------------------------------------------------------ *}
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where
"intercambia (x,y) = (y,x)"
value "intercambia (2,3)" -- "= (3,2)"
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar que
intercambia (intercambia (x,y)) = (x,y)
------------------------------------------------------------------- *}
lemma "intercambia (intercambia (x,y)) = (x,y)"
by simp
text {* ---------------------------------------------------------------
Ejercicio 5. Definir, por recursión, la función
inversa :: "'a list ⇒ 'a list"
tal que (inversa xs) es la lista obtenida invirtiendo el orden de los
elementos de xs. Por ejemplo,
inversa [3,2,5] = [5,2,3]
------------------------------------------------------------------ *}
fun inversa :: "'a list ⇒ 'a list" where
"inversa [] = []"
| "inversa (x#xs) = inversa xs @ [x]"
value "inversa [3,2,5]" -- "= [5,2,3]"
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar que
inversa [x] = [x]
------------------------------------------------------------------- *}
lemma "inversa [x] = [x]"
by simp
text {* ---------------------------------------------------------------
Ejercicio 7. Definir la función
repite :: "nat ⇒ 'a ⇒ 'a list" where
tal que . Por ejemplo,
repite 3 5 = [5,5,5]
------------------------------------------------------------------ *}
fun repite :: "nat ⇒ 'a ⇒ 'a list" where
"repite 0 x = []"
| "repite (Suc n) x = x # (repite n x)"
value "repite 3 5" -- "= [5,5,5]"
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar que
longitud (repite n x) = n
------------------------------------------------------------------- *}
lemma "longitud (repite n x) = n"
apply (induct_tac n)
apply (auto)
done
lemma "longitud (repite n x) = n"
by (induct n) auto
lemma longitud_repite:
"longitud (repite n x) = n"
proof (induct n)
show "longitud (repite 0 x) = 0" by simp
next
fix n
assume hi: "longitud (repite n x) = n"
show "longitud (repite (Suc n) x) = Suc n"
proof -
have "longitud (repite (Suc n) x) = longitud (x # (repite n x))" by simp
also have "... = 1 + longitud (repite n x)" by simp
also have "... = 1 + n" using hi by simp
also have "... = Suc n" by simp
finally show ?thesis .
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Definir la función
fun conc :: "'a list ⇒ 'a list ⇒ 'a list"
tal que . Por ejemplo,
conc [2,3] [4,3,5] = [2,3,4,3,5]
------------------------------------------------------------------ *}
fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc [] ys = ys"
| "conc (x#xs) ys = x # (conc xs ys)"
value "conc [2,3] [4,3,5]" -- "= [2,3,4,3,5]"
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar que
conc xs (conc ys zs) = (conc xs ys) zs
------------------------------------------------------------------- *}
lemma "conc xs (conc ys zs) = conc (conc xs ys) zs"
by (induct xs) auto
lemma conc_asociativa:
"conc xs (conc ys zs) = conc (conc xs ys) zs"
proof (induct xs)
show "conc [] (conc ys zs) = conc (conc [] ys) zs" by simp
next
fix x xs
assume hi: "conc xs (conc ys zs) = conc (conc xs ys) zs"
show "conc (x # xs) (conc ys zs) = conc (conc (x # xs) ys) zs"
proof -
have "conc (x # xs) (conc ys zs) = x # (conc xs (conc ys zs))" by simp
also have "... = x # (conc (conc xs ys) zs)" using hi by simp
also have "... = conc (x#(conc xs ys)) zs" by simp
also have "... = conc (conc (x # xs) ys) zs" by simp
finally show ?thesis .
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Refutar que
conc xs ys = conc ys xs
------------------------------------------------------------------- *}
lemma "conc xs ys = conc ys xs"
quickcheck
oops
text {* Encuentra el contraejemplo,
xs = [a\<^isub>2]
ys = [a\<^isub>1] *}
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar que
conc xs [] = xs
------------------------------------------------------------------- *}
lemma "conc xs [] = xs"
by (induct xs) auto
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar que
longitud (conc xs ys) = longitud xs + longitud ys
------------------------------------------------------------------- *}
lemma "longitud (conc xs ys) = longitud xs + longitud ys"
by (induct xs) auto
lemma long_conc:
"longitud (conc xs ys) = longitud xs + longitud ys"
proof (induct xs)
show "longitud (conc [] ys) = longitud [] + longitud ys" by simp
next
fix x xs
assume hi: "longitud (conc xs ys) = longitud xs + longitud ys"
show "longitud (conc (x # xs) ys) = longitud (x # xs) + longitud ys"
proof -
have "longitud (conc (x # xs) ys) = longitud (x # (conc xs ys))" by simp
also have "... = 1 + longitud (conc xs ys)" by simp
also have "... = 1 + (longitud xs + longitud ys)" using hi by simp
also have "... = (1+ longitud xs) + longitud ys" by simp
also have "... = longitud (x # xs) + longitud ys" by simp
finally show ?thesis .
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 14. Definir la función
coge :: "nat ⇒ 'a list ⇒ 'a list"
tal que (coge n xs) es la lista de los n primeros elementos de xs. Por
ejemplo,
coge 2 [3,7,5,4] = [3,7]
------------------------------------------------------------------ *}
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
"coge n [] = []"
| "coge 0 xs = []"
| "coge (Suc n) (x#xs) = x # (coge n xs)"
value "coge 2 [3,7,5,4]" -- "= [3,7]"
text {* ---------------------------------------------------------------
Ejercicio 15. Definir la función
elimina :: "nat ⇒ 'a list ⇒ 'a list"
tal que (coge n xs) es la lista de los n primeros elementos de xs. Por
ejemplo,
elimina 2 [3,7,5,4] = [5,4]
------------------------------------------------------------------ *}
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina n [] = []"
| "elimina 0 xs = xs"
| "elimina (Suc n) (x#xs) = elimina n xs"
value "elimina 2 [3,7,5,4]" -- "= [5,4]"
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar que
conc (coge n xs) (elimina n xs) = xs
------------------------------------------------------------------- *}
lemma "conc (coge n xs) (elimina n xs) = xs"
by (induct rule: coge.induct) auto
text {* coge.induct es el esquema de inducción asociado a la definición
de la función coge. Puede verse como sigue: *}
thm coge.induct
lemma "conc (coge n xs) (elimina n xs) = xs"
by (induct rule: elimina.induct) auto
thm elimina.induct
lemma conc_coge_elimina:
"conc (coge n xs) (elimina n xs) = xs"
proof (induct rule: coge.induct)
show "⋀n. conc (coge n []) (elimina n []) = []" by simp
next
show "⋀v va. conc (coge 0 (v # va)) (elimina 0 (v # va)) = v # va" by simp
next
fix x xs n
assume hi: "conc (coge n xs) (elimina n xs) = xs"
show "conc (coge (Suc n) (x # xs)) (elimina (Suc n) (x # xs)) = x # xs"
proof -
have "conc (coge (Suc n) (x # xs)) (elimina (Suc n) (x # xs)) = conc (coge (Suc n) (x # xs)) (elimina n xs)" by simp
also have "... = conc (x# (coge n xs)) (elimina n xs)" by simp
also have "... = x#(conc (coge n xs) (elimina n xs))" by simp
also have "... = (x#xs)" using hi by simp
finally show ?thesis .
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Definir la función
esVacia :: "'a list ⇒ bool"
tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo,
esVacia [] = True
esVacia [1] = False
------------------------------------------------------------------ *}
fun esVacia :: "'a list ⇒ bool" where
"esVacia [] = True"
| "esVacia (x#xs) = False"
value "esVacia []" -- "= True"
value "esVacia [1]" -- "= False"
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar que
esVacia xs = esVacia (conc xs xs)
------------------------------------------------------------------- *}
lemma "esVacia xs = esVacia (conc xs xs)"
by (induct xs) auto
lemma vacia_conc:
"esVacia xs = esVacia (conc xs xs)"
proof (induct xs)
show "esVacia [] = esVacia (conc [] [])" by simp
next
fix x xs
assume hi: "esVacia xs = esVacia (conc xs xs)"
show "esVacia (x # xs) = esVacia (conc (x # xs) (x # xs))"
proof -
have "esVacia (conc (x # xs) (x # xs)) = esVacia (x# (conc xs (x#xs)))" by simp
also have "... = esVacia (x # xs)" by simp
finally show ?thesis by simp
qed
qed
lemma vacia_conc':
"esVacia xs = esVacia (conc xs xs)"
proof (cases xs)
case Nil thus ?thesis by simp
next
case Cons thus ?thesis by simp
qed
lemma vacia_conc'':
"esVacia xs = esVacia (conc xs xs)"
by (cases xs) simp_all
text {* ---------------------------------------------------------------
Ejercicio 19. Definir la función
inversaAc :: "'a list ⇒ 'a list"
tal que (inversaAc xs) es a inversa de xs calculada usando
acumuladores. Por ejemplo,
inversaAc [3,2,5] = [5,2,3]
------------------------------------------------------------------ *}
fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
"inversaAcAux [] ys = ys"
| "inversaAcAux (x#xs) ys = inversaAcAux xs (x#ys)"
fun inversaAc :: "'a list ⇒ 'a list" where
"inversaAc xs = inversaAcAux xs []"
value "inversaAc [3,2,5]" -- "= [5,2,3]"
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar que
inversaAcAux xs ys = (inversa xs)@ys
------------------------------------------------------------------- *}
lemma inversaAcAux_es_inversa:
"inversaAcAux xs ys = (inversa xs)@ys"
by (induct xs arbitrary: ys) auto
lemma inversaAcAux_es_inversa_b:
"inversaAcAux xs ys = (inversa xs)@ys"
proof (induct xs arbitrary: ys)
show "⋀ys. inversaAcAux [] ys = inversa [] @ ys" by simp
next
fix x xs zs
assume hi: "⋀ys. inversaAcAux xs ys = inversa xs @ ys"
show "inversaAcAux (x#xs) zs = inversa (x#xs) @ zs"
proof -
have "inversaAcAux (x#xs) zs = inversaAcAux xs (x#zs)" by simp
also have "... = inversa xs @ (x#zs)" using hi by simp
also have "... = inversa xs @ [x] @ zs" by simp
also have "... = inversa (x#xs) @ zs" by simp
finally show ?thesis .
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar que
inversaAc xs = inversa xs
------------------------------------------------------------------- *}
corollary "inversaAc xs = inversa xs"
by (simp add: inversaAcAux_es_inversa)
text {* ---------------------------------------------------------------
Ejercicio 22. Definir la función
sum :: "int list ⇒ int"
tal que (sum xs) es la suma de los elementos de xs. Por ejemplo,
sum [3,2,5] = 10
------------------------------------------------------------------ *}
fun sum :: "int list ⇒ int" where
"sum [] = 0"
| "sum (x#xs) = x + sum xs"
value "sum [3,2,5]" -- "= 10"
text {* ---------------------------------------------------------------
Ejercicio 23. Definir la función
map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list
tal que (map f xs) es la lista obtenida aplicando la función f a los
elementos de xs. Por ejemplo,
map (λx. 2*x) [3,2,5] = [6,4,10]
------------------------------------------------------------------ *}
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map f [] = []"
| "map f (x#xs) = (f x) # map f xs"
value "map (λx. 2*x) [3::int,2,5]" -- "= [6,4,10]"
value "map (λx. 6*x) [3::int,2,5]" -- "= [18,12,30]"
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar que
sum (map (λx. 2*x) xs) = 2 * (sum xs)
------------------------------------------------------------------- *}
lemma "sum (map (λx. 2*x) xs) = 2 * (sum xs)"
by (induct xs) auto
lemma sum_map:
"sum (map (λx. 2*x) xs) = 2 * (sum xs)"
proof (induct xs)
show "sum (map (λx. 2*x) []) = 2 * (sum [])" by simp
next
fix a xs
assume hi: "sum (map (λx. 2*x) xs) = 2 * (sum xs)"
show "sum (map (λx. 2*x) (a#xs)) = 2 * (sum (a#xs))"
proof -
have "sum (map (λx. 2*x) (a#xs)) = sum ((2*a)#(map (λx. 2*x) xs))" by simp
also have "... = 2*a + sum (map (λx. 2*x) xs)" by simp
also have "... = 2*a + 2 * (sum xs)" using hi by simp
also have "... = 2*(a + sum xs)" by simp
also have "... = 2 * (sum (a#xs))"by simp
finally show ?thesis .
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar que
longitud (map f xs) = longitud xs
------------------------------------------------------------------- *}
lemma "longitud (map f xs) = longitud xs"
by (induct xs) auto
lemma long_map:
"longitud (map f xs) = longitud xs"
proof (induct xs)
show "longitud (map f []) = longitud []" by simp
next
fix x xs
assume hi: "longitud (map f xs) = longitud xs"
show "longitud (map f (x#xs)) = longitud (x#xs)"
proof -
have "longitud (map f (x#xs)) = longitud ((f x)#(map f xs))" by simp
also have "... = 1 + longitud (map f xs)" by simp
also have "... = 1 + longitud xs" using hi by simp
also have "... = longitud (x#xs)" by simp
finally show ?thesis .
qed
qed
end