Menu Close

Etiqueta: Teoría de números

Densidades de números abundantes, perfectos y deficientes

La n-ésima densidad de un tipo de número es el cociente entre la cantidad de los números entre 1 y n que son del tipo considerado y n. Por ejemplo, la 7-ésima densidad de los múltiplos de 3 es 2/7 ya que entre los 7 primeros números sólo 2 son múltiplos de 3.

Definir las funciones

   densidades :: Int -> (Double,Double,Double)
   graficas   :: Int -> IO ()

tales que

  • (densidades n) es la terna formada por la n-ésima densidad
    • de los números abundantes (es decir, para los que la suma de sus divisores propios es mayor que el número),
    • de los números perfectos (es decir, para los que la suma de sus divisores propios es mayor que el número) y
    • de los números deficientes (es decir, para los que la suma de sus divisores propios es menor que el número).

    Por ejemplo,

    densidades 100     ==  (0.22,    2.0e-2, 0.76)
    densidades 1000    ==  (0.246,   3.0e-3, 0.751)
    densidades 10000   ==  (0.2488,  4.0e-4, 0.7508)
    densidades 100000  ==  (0.24795, 4.0e-5, 0.75201)
    densidades 1000000 ==  (0.247545,4.0e-6, 0.752451)
  • (graficas n) dibuja las gráficas de las k-ésimas densidades (para k entre 1 y n) de los números abundantes, de los números perfectos y de los números deficientes. Por ejemplo, (graficas 100) dibuja

    y (graficas 400) dibuja

Sumas de divisores propios

Definir la función

   sumaDivisoresHasta :: Integer -> [(Integer,Integer)]

tal que (sumaDivisoresHasta n) es la lista de los pares (a,b) tales que a es un número entre 1 y n y b es la suma de los divisores propios de a. Por ejemplo,

   λ> sumaDivisoresHasta 12
   [(1,0),(2,1),(3,1),(4,3),(5,1),(6,6),(7,1),(8,7),(9,4),(10,8),(11,1),(12,16)]
   λ> last (sumaDivisoresHasta2 (10^7))
   (10000000,14902280)

Parejas de números y divisores

Definir la función

   divisoresHasta :: Int -> [(Int,Int)]

tal que (divisoresHasta n) es la lista de los pares (a,b) tales que a es un número entre 2 y n y b es un divisor propio de a. Por ejemplo,

   λ> divisoresHasta 6
   [(2,1),(3,1),(4,1),(5,1),(6,1),(4,2),(6,2),(6,3)]
   λ> divisoresHasta 8
   [(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(4,2),(6,2),(8,2),(6,3),(8,4)]
   λ> length (divisoresHasta 1234567)
   16272448

Sumas de 4 primos

La conjetura de Waring sobre los números primos establece que todo número impar es primo o la suma de tres primos. La conjetura de Goldbach afirma que todo par mayor que 2 es la suma de dos números primos. Ambos ha estado abiertos durante más de 200 años. En este problema no se propone su solución, sino una tarea más simple: buscar una manera de expresar los enteros mayores que 7 como suma de exactamente cuatro números primos; es decir, definir la función

   suma4primos :: Integer -> [(Integer,Integer,Integer,Integer)]

tal que (suma4primos n) es la lista de las cuádruplas crecientes (a,b,c,d) de números primos cuya suma es n (que se supone mayor que 7). Por ejemplo,

   suma4primos 18             == [(2,2,3,11),(2,2,7,7),(3,3,5,7),(3,5,5,5)]
   head (suma4primos (10^14)) == (2,2,23,99999999999973)

Comprobar con QuickCheck que todo entero mayor que 7 se puede escribir como suma de exactamente cuatro números primos.

Sucesión de sumas de dos números abundantes

Un número n es abundante si la suma de los divisores propios de n es mayor que n. El primer número abundante es el 12 (cuyos divisores propios son 1, 2, 3, 4 y 6 cuya suma es 16). Por tanto, el menor número que es la suma de dos números abundantes es el 24.

Definir la sucesión

   sumasDeDosAbundantes :: [Integer]

cuyos elementos son los números que se pueden escribir como suma de dos números abundantes. Por ejemplo,

   take 10 sumasDeDosAbundantes  ==  [24,30,32,36,38,40,42,44,48,50]

Suma de divisores

Definir la función

   sumaDivisores :: Integer -> Integer

tal que (sumaDivisores x) es la suma de los divisores de x. Por ejemplo,

   sumaDivisores 12  ==  28
   sumaDivisores 25  ==  31
   sumaDivisores (product [1..25])  ==  93383273455325195473152000
   length (show (sumaDivisores (product [1..30000])))  ==  121289
   maximum (map sumaDivisores [1..10^5])  ==  403200

Número de divisores

Definir la función

   numeroDivisores :: Integer -> Integer

tal que (numeroDivisores x) es el número de divisores de x. Por ejemplo,

   numeroDivisores 12  ==  6
   numeroDivisores 25  ==  3
   length (show (numeroDivisores (product [1..3*10^4])))  ==  1948

Conjunto de divisores

Definir la función

   divisores :: Integer -> [Integer]

tal que (divisores x) es el conjunto de divisores de x. Por ejemplo,

  divisores 30  ==  [1,2,3,5,6,10,15,30]
  length (divisores (product [1..10]))  ==  270
  length (divisores (product [1..25]))  ==  340032

Reconocimiento de potencias de 2

Definir la función

   esPotenciaDeDos :: Integer -> Bool

tal que (esPotenciaDeDos n) se verifica si n es una potencia de dos (suponiendo que n es mayor que 0). Por ejemplo.

   esPotenciaDeDos    1        == True
   esPotenciaDeDos    2        == True
   esPotenciaDeDos    6        == False
   esPotenciaDeDos    8        == True
   esPotenciaDeDos 1024        == True
   esPotenciaDeDos 1026        == False
   esPotenciaDeDos (2^(10^8))  == True

Particiones de enteros positivos

Una partición de un entero positivo n es una manera de escribir n como una suma de enteros positivos. Dos sumas que sólo difieren en el orden de sus sumandos se consideran la misma partición. Por ejemplo, 4 tiene cinco particiones: 4, 3+1, 2+2, 2+1+1 y 1+1+1+1.

Definir la función

   particiones :: Int -> [[Int]]

tal que (particiones n) es la lista de las particiones del número n. Por ejemplo,

   particiones 4  ==  [[4],[3,1],[2,2],[2,1,1],[1,1,1,1]]
   particiones 5  ==  [[5],[4,1],[3,2],[3,1,1],[2,2,1],[2,1,1,1],[1,1,1,1,1]]
   length (particiones 50)  ==  204226