Menu Close

Etiqueta: sqrt

Números libres de cuadrados

Un número entero positivo es libre de cuadrados si no es divisible el cuadrado de ningún entero mayor que 1. Por ejemplo, 70 es libre de cuadrado porque sólo es divisible por 1, 2, 5, 7 y 70; en cambio, 40 no es libre de cuadrados porque es divisible por 2^2.

Definir la función

   libreDeCuadrados :: Integer -> Bool

tal que (libreDeCuadrados x) se verifica si x es libre de cuadrados. Por ejemplo,

   libreDeCuadrados 70                    ==  True
   libreDeCuadrados 40                    ==  False
   libreDeCuadrados 510510                ==  True
   libreDeCuadrados (((10^10)^10)^10)     ==  False

Otro ejemplo,

   λ> filter (not . libreDeCuadrados) [1..50]
   [4,8,9,12,16,18,20,24,25,27,28,32,36,40,44,45,48,49,50]

Soluciones

import Data.Numbers.Primes (primeFactors, primes)
import Data.List (nub)
import Test.QuickCheck
 
import Data.List (genericLength) -- Para OS
 
-- 1ª definición:
libreDeCuadrados :: Integer -> Bool
libreDeCuadrados x = x == product (divisoresPrimos x)
 
-- (divisoresPrimos x) es la lista de los divisores primos de x. Por
-- ejemplo,  
--    divisoresPrimos 40  ==  [2,5]
--    divisoresPrimos 70  ==  [2,5,7]
divisoresPrimos :: Integer -> [Integer]
divisoresPrimos x = [n | n <- divisores x, primo n]
 
-- (divisores n) es la lista de los divisores del número n. Por ejemplo,
--    divisores 30  ==  [1,2,3,5,6,10,15,30]  
divisores :: Integer -> [Integer]
divisores n = [x | x <- [1..n], n `mod` x == 0]
 
-- (primo n) se verifica si n es primo. Por ejemplo,
--    primo 30  == False
--    primo 31  == True  
primo :: Integer -> Bool
primo n = divisores n == [1, n]
 
-- 2ª definición
libreDeCuadrados2 :: Integer -> Bool
libreDeCuadrados2 n = 
    null [x | x <- [2..n], rem n (x^2) == 0]
 
-- 3ª definición
libreDeCuadrados3 :: Integer -> Bool
libreDeCuadrados3 n = 
    null [x | x <- [2..floor (sqrt (fromIntegral n))], 
              rem n (x^2) == 0]
 
-- 4ª definición
libreDeCuadrados4 :: Integer -> Bool
libreDeCuadrados4 n = 
  xs == nub xs
  where xs = primeFactors n
 
-- 5ª definición
libreDeCuadrados5 :: Integer -> Bool
libreDeCuadrados5 n = 
  all (\(x,y) -> x /= y) (zip xs (tail xs))
  where xs = primeFactors n
 
-- Equivalencia de las definiciones
-- ================================
 
prop_equivalencia :: Integer -> Property
prop_equivalencia n =
  n > 0 ==>
  all (== libreDeCuadrados n)
      [f n | f <- [ libreDeCuadrados2
                  , libreDeCuadrados3
                  , libreDeCuadrados4
                  , libreDeCuadrados5
                  ]]
 
-- La comprobación es
--    λ> quickCheck prop_equivalencia
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
--    λ> libreDeCuadrados 510510
--    True
--    (0.76 secs, 89,522,360 bytes)
--    λ> libreDeCuadrados2 510510
--    True
--    (1.78 secs, 371,826,320 bytes)
--    λ> libreDeCuadrados3 510510
--    True
--    (0.01 secs, 0 bytes)
--    λ> libreDeCuadrados4 510510
--    True
--    (0.00 secs, 152,712 bytes)
--
--    λ> filter libreDeCuadrados3 [1..] !! (2*10^4)
--    32906
--    (2.24 secs, 1,812,139,456 bytes)
--    λ> filter libreDeCuadrados4 [1..] !! (2*10^4)
--    32906
--    (0.51 secs, 936,216,664 bytes)
--    λ> filter libreDeCuadrados5 [1..] !! (2*10^4)
--    32906
--    (0.38 secs, 806,833,952 bytes)
--
--    λ> filter libreDeCuadrados4 [1..] !! (10^5)
--    164499
--    (3.28 secs, 7,470,629,888 bytes)
--    λ> filter libreDeCuadrados5 [1..] !! (10^5)
--    164499
--    (2.88 secs, 6,390,072,384 bytes)

Codificación matricial

El procedimiento de codificación matricial se puede entender siguiendo la codificación del mensaje "todoparanada" como se muestra a continuación:

  • Se calcula la longitud L del mensaje. En el ejemplo es L es 12.
  • Se calcula el menor entero positivo N cuyo cuadrado es mayor o igual que L. En el ejemplo N es 4.
  • Se extiende el mensaje con N²-L asteriscos. En el ejemplo, el mensaje extendido es "todoparanada****"
  • Con el mensaje extendido se forma una matriz cuadrada NxN. En el ejemplo la matriz es
     | t o d o |
     | p a r a |
     | n a d a |
     | * * * * |
  • Se rota 90º la matriz del mensaje extendido. En el ejemplo, la matriz rotada es
     | * n p t |
     | * a a o |
     | * d r d |
     | * a a o |
  • Se calculan los elementos de la matriz rotada. En el ejemplo, los elementos son "*npt*aap*drd*aao"
  • El mensaje codificado se obtiene eliminando los asteriscos de los elementos de la matriz rotada. En el ejemplo, "nptaapdrdaao".

Definir la función

   codificado :: String -> String

tal que (codificado cs) es el mensaje obtenido aplicando la codificación matricial al mensaje cs. Por ejemplo,

   codificado "todoparanada"    ==  "nptaaodrdaao"
   codificado "nptaaodrdaao"    ==  "danaopadtora"
   codificado "danaopadtora"    ==  "todoparanada"
   codificado "entodolamedida"  ==  "dmdeaeondltiao"

Nota: Este ejercicio está basado en el problema Secret Message de Kattis.

Soluciones

import Data.List (genericLength)
import Data.Array
 
codificado :: String -> String
codificado cs =
  filter (/='*') (elems (rota p))
  where n = ceiling (sqrt (genericLength cs))
        p = listArray ((1,1),(n,n)) (cs ++ repeat '*')
 
rota :: Array (Int,Int) Char -> Array (Int,Int) Char
rota p = array d [((i,j),p!(n+1-j,i)) | (i,j) <- indices p]
  where d = bounds p
        n = fst (snd d)

Números de Catalan

Los números de Catalan forman la sucesión cuyo término general es
Numeros_de_Catalan_1

Los primeros números de Catalan son

   1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786

Los números de Catalan satisfacen la siguiente relación de recurrencia:
Numeros_de_Catalan_2

Asintóticamente, los números de Catalan crecen como:
Numeros_de_Catalan_3
considerando que el cociente entre el n-ésimo número de Catalan y la expresión de la derecha tiende hacia 1 cuando n tiende a infinito.

Definir las funciones

   catalan :: [Integer]
   grafica :: Int -> Int -> IO ()

tales que

  • catalan es la lista de términos de la sucesión de Catalan. Por ejemplo,
     λ> take 12 catalan
     [1,1,2,5,14,42,132,429,1430,4862,16796,58786]
     λ> length (show (catalan !! 50000))
     30096
  • (grafica a b) dibuja los n-ésimos términos de la sucesión de Catalan, para n entre a y b, junto con los de la expresión de la derecha de
    Numeros_de_Catalan_3
    Por ejemplo, (grafica 5 10) dibuja
    Numeros_de_Catalan_4
    y (grafica 55 60) dibuja
    Numeros_de_Catalan_5

Soluciones

import Graphics.Gnuplot.Simple
 
catalan :: [Integer]
catalan = scanl (\c n -> c*2*(2*n-1) `div` (n+1)) 1 [1..]
 
grafica :: Int -> Int -> IO ()
grafica a b = 
  plotLists [Key Nothing]
            [[(fromIntegral n, fromIntegral (catalan !! n)) | n <- [a..b]]
            ,[(n,4**n/(n**(3/2)*(sqrt pi))) | n <- [c..d]]]
  where c, d :: Double
        c = fromIntegral a
        d = fromIntegral b

Caminos minimales en un arbol numérico

En la librería Data.Tree se definen los árboles y los bosques como sigue

   data Tree a   = Node a (Forest a)
   type Forest a = [Tree a]

Se pueden definir árboles. Por ejemplo,

   ej = Node 3 [Node 5 [Node 9 []], Node 7 []]

Y se pueden dibujar con la función drawTree. Por ejemplo,

   λ> putStrLn (drawTree (fmap show ej))
   3
   |
   +- 5
   |  |
   |  `- 9
   |
   `- 7

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u*v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

       6
      / \
     5   3 
     |   |
     4   2
    / \  |
   3   2 1 
   |   | 
   2   1
   |
   1

Definir las siguientes funciones

   mayoresDivisores :: Int -> [Int]
   arbol            :: Int -> Tree Int
   caminos          :: Int -> [[Int]]
   caminosMinimales :: Int -> [[Int]]

tales que

  • (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,
     mayoresDivisores 24  ==  [12,8,6]
     mayoresDivisores 16  ==  [8,4]
     mayoresDivisores 10  ==  [5]
     mayoresDivisores 17  ==  []
  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,
     λ> putStrLn (drawTree (fmap show (arbol 6)))
     6
     |
     +- 5
     |  |
     |  `- 4
     |     |
     |     +- 3
     |     |  |
     |     |  `- 2
     |     |     |
     |     |     `- 1
     |     |
     |     `- 2
     |        |
     |        `- 1
     |
     `- 3
        |
        `- 2
           |
           `- 1
  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,
     λ> caminos 6
     [[6,5,4,3,2,1],[6,5,4,2,1],[6,3,2,1]]
  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,
     λ> caminosMinimales 6
     [[6,3,2,1]]
     λ> caminosMinimales 17
     [[17,16,4,2,1]]
     λ> caminosMinimales 50
     [[50,25,5,4,2,1],[50,10,9,3,2,1],[50,10,5,4,2,1]]

Soluciones

import Data.Tree
 
mayoresDivisores :: Int -> [Int]
mayoresDivisores x =
  [max u v | u <- [2..floor (sqrt (fromIntegral x))]
           , x `mod` u == 0
           , let v = x `div` u]  
 
arbol :: Int -> Tree Int
arbol 1 = Node 1 []
arbol x = Node x (arbol (x-1) : [arbol y | y <- mayoresDivisores x])
 
caminos :: Int -> [[Int]]
caminos = caminosArbol . arbol
 
--    λ> caminosArbol (arbol 6)
--    [[6,5,4,3,2,1],[6,5,4,2,1],[6,3,2,1]]
caminosArbol :: Tree a -> [[a]]
caminosArbol (Node x []) = [[x]]
caminosArbol (Node x as) = [x:ys | ys <- caminosBosque as]
 
caminosBosque :: Forest a -> [[a]]
caminosBosque = concatMap caminosArbol
 
caminosMinimales :: Int -> [[Int]]
caminosMinimales x = [ys | ys <- yss, length ys == m]
  where yss = caminos x
        m   = minimum (map length yss)

Cálculo de pi usando la fórmula de Vieta

La fórmula de Vieta para el cálculo de pi es la siguiente
Calculo_de_pi_usando_la_formula_de_Vieta

Definir las funciones

   aproximacionPi :: Int -> Double
   errorPi :: Double -> Int

tales que

  • (aproximacionPi n) es la aproximación de pi usando n factores de la fórmula de Vieta. Por ejemplo,
     aproximacionPi  5  ==  3.140331156954753
     aproximacionPi 10  ==  3.1415914215112
     aproximacionPi 15  ==  3.141592652386592
     aproximacionPi 20  ==  3.1415926535886207
     aproximacionPi 25  ==  3.141592653589795
  • (errorPi x) es el menor número de factores de la fórmula de Vieta necesarios para obtener pi con un error menor que x. Por ejemplo,
     errorPi 0.1        ==  2
     errorPi 0.01       ==  4
     errorPi 0.001      ==  6
     errorPi 0.0001     ==  7
     errorPi 1e-4       ==  7
     errorPi 1e-14      ==  24
     pi                 ==  3.141592653589793
     aproximacionPi 24  ==  3.1415926535897913

Soluciones

-- 1ª definición de aproximacionPi
aproximacionPi :: Int -> Double
aproximacionPi n = product [2 / aux x | x <- [0..n]]
  where
    aux 0 = 1
    aux 1 = sqrt 2
    aux n = sqrt (2 + aux (n-1))
 
-- 2ª definición de aproximacionPi
aproximacionPi2 :: Int -> Double
aproximacionPi2 n = product [2/x | x <- 1 : xs] 
  where xs = take n $ iterate (\x -> sqrt (2+x)) (sqrt 2)
 
-- 3ª definición de aproximaxionPi
aproximacionPi3 :: Int -> Double
aproximacionPi3 n =  product (2 : take n (map (2/) xs))
  where xs = sqrt 2 : [sqrt (2 + x) | x <- xs]
 
-- 1ª definición de errorPi
errorPi :: Double -> Int
errorPi x = head [n | n <- [1..]
                    , abs (pi - aproximacionPi n) < x]
 
-- 2ª definición de errorPi
errorPi2 :: Double -> Int
errorPi2 x = until aceptable (+1) 1
  where aceptable n = abs (pi - aproximacionPi n) < x