Menu Close

Etiqueta: rem

Último dígito no nulo del factorial

El factorial de 7 es

   7! = 1 * 2 * 3 * 4 * 5 * 6 * 7 = 5040

por tanto, el último dígito no nulo del factorial de 7 es 4.

Definir la función

   ultimoNoNuloFactorial :: Integer -> Integer

tal que (ultimoNoNuloFactorial n) es el último dígito no nulo del factorial de n. Por ejemplo,

   ultimoNoNuloFactorial  7  == 4
   ultimoNoNuloFactorial 10  == 8
   ultimoNoNuloFactorial 12  == 6
   ultimoNoNuloFactorial 97  == 2
   ultimoNoNuloFactorial  0  == 1

Comprobar con QuickCheck que si n es mayor que 4, entonces el último dígito no nulo del factorial de n es par.

Soluciones

import Data.Char (digitToInt)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
ultimoNoNuloFactorial :: Integer -> Integer
ultimoNoNuloFactorial = ultimoNoNulo . factorial
 
-- (factorial n) es el factorial de n. Por ejemplo,
--    factorial 7  ==  5040
factorial :: Integer -> Integer
factorial n = product [1..n]
 
-- (ultimoNoNulo n) es el último dígito no nulo de n. Por ejemplo,
--    ultimoNoNulo 5040  ==  4
ultimoNoNulo :: Integer -> Integer
ultimoNoNulo n | r /= 0    = r
               | otherwise = ultimoNoNulo q
  where (q,r) = n `quotRem` 10
 
-- 2ª solución
-- ===========
 
ultimoNoNuloFactorial2 :: Integer -> Integer
ultimoNoNuloFactorial2 = last . filter (/= 0) . digitos . factorial
 
digitos :: Integer -> [Integer]
digitos n = [read [x] | x <- show n]
 
-- 3ª solución
-- ===========
 
ultimoNoNuloFactorial3 :: Integer -> Integer
ultimoNoNuloFactorial3 = last . filter (/= 0) . digitos3 . factorial3
 
digitos3 :: Integer -> [Integer]
digitos3 = map (fromIntegral . digitToInt) . show
 
factorial3 :: Integer -> Integer
factorial3 = product . enumFromTo 1
 
-- 4ª solución
-- ===========
 
ultimoNoNulo4 :: Integer -> Integer
ultimoNoNulo4 n = read [head (dropWhile (=='0') (reverse (show n)))]
 
-- 5ª solución
-- ===========
 
ultimoNoNulo5 :: Integer -> Integer
ultimoNoNulo5 =
  read . return . head . dropWhile ('0' ==) . reverse . show
 
-- Propiedad
-- =========
 
-- La propiedad es
prop_ultimoNoNuloFactorial :: Integer -> Property
prop_ultimoNoNuloFactorial n = 
  n > 4 ==> even (ultimoNoNuloFactorial n)
 
-- La comprobación es
--    ghci> quickCheck prop_ultimoNoNuloFactorial
--    +++ OK, passed 100 tests.

Pensamiento

Busca el tu esencial,
que no está en ninguna parte
y en todas partes está.

Antonio Machado

Sucesión de Cantor de números innombrables

Un número es innombrable si es divisible por 7 o alguno de sus dígitos es un 7. Un juego infantil consiste en contar saltándose los números innombrables:

   1 2 3 4 5 6 ( ) 8 9 10 11 12 13 ( ) 15 16 ( ) 18 ...

La sucesión de Cantor se obtiene llenando los huecos de la sucesión anterior:

  1 2 3 4 5 6 (1) 8 9 10 11 12 13 (2) 15 16 (3) 18 19 20 (4) 22 23
  24 25 26 (5) (6) 29 30 31 32 33 34 (1) 36 (8) 38 39 40 41  (9) 43
  44 45 46 (10) 48 (11) 50 51 52 53 54 55 (12) (13) 58 59 60 61 62
  (2) 64 65 66 (15) 68 69 (16) (3) (18) (19) (20) (4) (22) (23) (24)
  (25) 80 81 82 83 (26) 85 86 (5) 88 89 90 (6) 92 93 94 95 96 (29)
  (30) 99 100

Definir las funciones

   sucCantor        :: [Integer]
   graficaSucCantor :: Int -> IO ()

tales que

  • sucCantor es la lista cuyos elementos son los términos de la sucesión de Cantor. Por ejemplo,
     λ> take 100 sucCantor
     [1,2,3,4,5,6, 1 ,8,9,10,11,12,13, 2, 15,16, 3, 18,19,20, 4,
      22,23,24,25,26, 5 , 6 ,29,30,31,32,33,34, 1 ,36 , 8 ,38,39,
      40,41, 9 ,43,44,45,46, 10 ,48, 11 ,50,51,52,53,54,55 , 12 ,
      13, 58,59,60,61,62, 2 ,64,65,66, 15 ,68,69, 16 , 3 , 18, 19,
      20, 4, 22, 23, 24 ,25 ,80,81,82,83, 26 ,85,86, 5 ,88,89,90,
      6, 92,93,94,95,96, 29, 30 ,99,100]
     λ> sucCantor2 !! (5+10^6)
     544480
     λ> sucCantor2 !! (6+10^6)
     266086
  • (graficaSucCantor n) es la gráfica de los n primeros términos de la sucesión de Cantor. Por ejemplo, (graficaSucCantor 200) dibuja

Soluciones

import Graphics.Gnuplot.Simple
 
-- 1ª solución
-- ===========
 
sucCantor1 :: [Integer]
sucCantor1 = map fst $ scanl f (1,0) [2..]
  where f (a,i) x
          | esInnombrable x = (sucCantor1 !! i, i+1)
          | otherwise       = (x,i)
 
esInnombrable :: Integer -> Bool
esInnombrable x =
  rem x 7 == 0 || '7' `elem` show x
 
-- 2ª solución
-- ===========
 
sucCantor2 :: [Integer]
sucCantor2 = aux 0 1
  where aux i x
          | esInnombrable x = sucCantor2 !! i : aux (i+1) (x+1)
          | otherwise       = x : aux i (x+1) 
 
-- 3ª solución
-- ===========
 
sucCantor3 :: [Integer]
sucCantor3 = 1 : aux [2..] sucCantor3
  where aux [] _ = []
        aux (x:xs) a@(y:ys)
          | esInnombrable x = y : aux xs ys
          | otherwise       = x : aux xs a
 
-- Definición de graficaSucCantor
-- ========================================
 
graficaSucCantor :: Int -> IO ()
graficaSucCantor n =
  plotList [ Key Nothing
           , PNG ("Sucesion_de_Cantor_de_numeros_innombrables.png")
           ]
           (take n sucCantor3)

Pensamiento

Dices que nada se pierde
y acaso dices verdad;
pero todo lo perdemos
y todo nos perderá.

Antonio Machado

El 2019 es un número de la suerte

Un número de la suerte es un número natural que se genera por una criba, similar a la criba de Eratóstenes, como se indica a continuación:

Se comienza con la lista de los números enteros a partir de 1:

   1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25...

Se eliminan los números de dos en dos

   1,  3,  5,  7,  9,   11,   13,   15,   17,   19,   21,   23,   25...

Como el segundo número que ha quedado es 3, se eliminan los números restantes de tres en tres:

   1,  3,      7,  9,         13,   15,         19,   21,         25...

Como el tercer número que ha quedado es 7, se eliminan los números restantes de siete en siete:

   1,  3,      7,  9,         13,   15,               21,         25...

Este procedimiento se repite indefinidamente y los supervivientes son los números de la suerte:

   1,3,7,9,13,15,21,25,31,33,37,43,49,51,63,67,69,73,75,79

Definir las funciones

   numerosDeLaSuerte  :: [Int]
   esNumeroDeLaSuerte :: Int -> Bool

tales que

  • numerosDeLaSuerte es la sucesión de los números de la suerte. Por ejemplo,
     λ> take 20 numerosDeLaSuerte
     [1,3,7,9,13,15,21,25,31,33,37,43,49,51,63,67,69,73,75,79]
     λ> numerosDeLaSuerte !! 277
     2019
     λ> numerosDeLaSuerte !! 2000
     19309
  • (esNumeroDeLaSuerte n) que se verifica si n es un número de la suerte. Por ejemplo,
   esNumeroDeLaSuerte 15    ==  True
   esNumeroDeLaSuerte 16    ==  False
   esNumeroDeLaSuerte 2019  ==  True

Soluciones

-- 1ª definición de numerosDeLaSuerte 
numerosDeLaSuerte :: [Int]
numerosDeLaSuerte = criba 3 [1,3..]
  where
    criba i (n:s:xs) =
      n : criba (i + 1) (s : [x | (k, x) <- zip [i..] xs
                                , rem k s /= 0])
 
-- 2ª definición de numerosDeLaSuerte 
numerosDeLaSuerte2 :: [Int]
numerosDeLaSuerte2 =  1 : criba 2 [1, 3..]
  where criba k xs = z : criba (k + 1) (aux xs)
          where z = xs !! (k - 1 )
                aux ws = us ++ aux vs
                  where (us, _:vs) = splitAt (z - 1) ws 
 
-- Comparación de eficiencia
-- =========================
 
--    λ> numerosDeLaSuerte2 !! 200
--    1387
--    (9.25 secs, 2,863,983,232 bytes)
--    λ> numerosDeLaSuerte !! 200
--    1387
--    (0.06 secs, 10,263,880 bytes)
 
-- Definición de esNumeroDeLaSuerte
esNumeroDeLaSuerte :: Int -> Bool
esNumeroDeLaSuerte n =
  n == head (dropWhile (<n) numerosDeLaSuerte)

Pensamiento

Ya es sólo brocal el pozo;
púlpito será mañana;
pasado mañana, trono.

Antonio Machado

Último dígito no nulo del factorial

El factorial de 7 es

   7! = 1 * 2 * 3 * 4 * 5 * 6 * 7 = 5040

por tanto, el último dígito no nulo del factorial de 7 es 4.

Definir la función

   ultimoNoNuloFactorial :: Integer -> Integer

tal que (ultimoNoNuloFactorial n) es el último dígito no nulo del factorial de n. Por ejemplo,

   ultimoNoNuloFactorial  7  == 4
   ultimoNoNuloFactorial 10  == 8
   ultimoNoNuloFactorial 12  == 6
   ultimoNoNuloFactorial 97  == 2
   ultimoNoNuloFactorial  0  == 1

Comprobar con QuickCheck que si n es mayor que 4, entonces el último dígito no nulo del factorial de n es par.

Soluciones

import Test.QuickCheck
 
-- 1ª definición
-- =============
 
ultimoNoNuloFactorial :: Integer -> Integer
ultimoNoNuloFactorial n = ultimoNoNulo (factorial n)
 
-- (ultimoNoNulo n) es el último dígito no nulo de n. Por ejemplo,
--    ultimoNoNulo 5040  ==  4
ultimoNoNulo :: Integer -> Integer
ultimoNoNulo n
  | m /= 0    = m
  | otherwise = ultimoNoNulo (n `div` 10)
  where m = n `rem` 10
 
-- (factorial n) es el factorial de n. Por ejemplo,
--    factorial 7  ==  5040
factorial :: Integer -> Integer
factorial n = product [1..n]
 
-- 2ª definición
-- =============
 
ultimoNoNuloFactorial2 :: Integer -> Integer
ultimoNoNuloFactorial2 n = ultimoNoNulo2 (factorial n)
 
-- (ultimoNoNulo2 n) es el último dígito no nulo de n. Por ejemplo,
--    ultimoNoNulo 5040  ==  4
ultimoNoNulo2 :: Integer -> Integer
ultimoNoNulo2 n = read [head (dropWhile (=='0') (reverse (show n)))]
 
-- Comprobación
-- ============
 
-- La propiedad es
prop_ultimoNoNuloFactorial :: Integer -> Property
prop_ultimoNoNuloFactorial n = 
  n > 4 ==> even (ultimoNoNuloFactorial n)
 
-- La comprobación es
--    ghci> quickCheck prop_ultimoNoNuloFactorial
--    +++ OK, passed 100 tests.

Pensamiento

Incierto es, lo porvenir. ¿Quién sabe lo que va a pasar? Pero incierto es también lo pretérito. ¿Quién sabe lo que ha pasado? De suerte que ni el porvenir está escrito en ninguna parte, ni el pasado tampoco.

Antonio Machado

Pares definidos por su MCD y su MCM

Definir las siguientes funciones

   pares  :: Integer -> Integer -> [(Integer,Integer)]
   nPares :: Integer -> Integer -> Integer

tales que

  • (pares a b) es la lista de los pares de números enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,
     pares 3 3  == [(3,3)]
     pares 4 12 == [(4,12),(12,4)]
     pares 2 12 == [(2,12),(4,6),(6,4),(12,2)]
     pares 2 60 == [(2,60),(4,30),(6,20),(10,12),(12,10),(20,6),(30,4),(60,2)]
     pares 2 7  == []
     pares 12 3 == []
     length (pares 3 (product [3,5..91]))  ==  8388608
  • (nPares a b) es el número de pares de enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,
     nPares 3 3   ==  1
     nPares 4 12  ==  2
     nPares 2 12  ==  4
     nPares 2 60  ==  8
     nPares 2 7   ==  0
     nPares 12 3  ==  0
     nPares 3 (product [3..3*10^4]) `mod` (10^12)  ==  477999992832
     length (show (nPares 3 (product [3..3*10^4])))  ==  977

Soluciones

import Data.Numbers.Primes (primeFactors)
import Data.List (genericLength, group, nub, sort, subsequences)
import Test.QuickCheck
 
-- 1ª definición de pares
-- ======================
 
pares1 :: Integer -> Integer -> [(Integer,Integer)]
pares1 a b = [(x,y) | x <- [1..b]
                    , y <- [1..b]
                    , gcd x y == a
                    , lcm x y == b]
 
-- 2ª definición de pares
-- ======================
 
pares2 :: Integer -> Integer -> [(Integer,Integer)]
pares2 a b = [(x,y) | x <- [a,a+a..b]
                    , y <- [a,a+a..b]
                    , gcd x y == a
                    , lcm x y == b]
 
-- Comparacioń de eficiencia
--    λ> length (pares1 3 (product [3,5..11]))
--    16
--    (95.12 secs, 86,534,165,528 bytes)
--    λ> length (pares2 3 (product [3,5..11]))
--    16
--    (15.80 secs, 14,808,762,128 bytes)
 
-- 3ª definición de pares
-- ======================
 
pares3 :: Integer -> Integer -> [(Integer,Integer)]
pares3 a b = [(x,y) | x <- [a,a+a..b]
                    , c `rem` x == 0
                    , let y = c `div` x
                    , gcd x y == a
                    ]
  where c = a * b
 
-- Comparacioń de eficiencia
--    λ> length (pares2 3 (product [3,5..11]))
--    16
--    (15.80 secs, 14,808,762,128 bytes)
--    λ> length (pares3 3 (product [3,5..11]))
--    16
--    (0.01 secs, 878,104 bytes)
 
-- 4ª definición de pares
-- ======================
 
-- Para la cuarta definición de pares se observa la relación con los
-- factores primos
--    λ> [(primeFactors x, primeFactors y) | (x,y) <- pares1 2 12]
--    [([2],[2,2,3]),([2,2],[2,3]),([2,3],[2,2]),([2,2,3],[2])]
--    λ> [primeFactors x | (x,y) <- pares1 2 12]
--    [[2],[2,2],[2,3],[2,2,3]]
--    λ> [primeFactors x | (x,y) <- pares1 2 60]
--    [[2],[2,2],[2,3],[2,5],[2,2,3],[2,2,5],[2,3,5],[2,2,3,5]]
--    λ> [primeFactors x | (x,y) <- pares1 6 60]
--    [[2,3],[2,2,3],[2,3,5],[2,2,3,5]]
--    λ> [primeFactors x | (x,y) <- pares1 2 24]
--    [[2],[2,3],[2,2,2],[2,2,2,3]]
-- Se observa que cada pare se obtiene de uno de los subconjuntos de los
-- divisores primos de b/a. Por ejemplo,
--    λ> (a,b) = (2,24)
--    λ> b `div` a
--    12
--    λ> primeFactors it
--    [2,2,3]
--    λ> group it
--    [[2,2],[3]]
--    λ> subsequences it
--    [[],[[2,2]],[[3]],[[2,2],[3]]]
--    λ> map concat it
--    [[],[2,2],[3],[2,2,3]]
--    λ> map product it
--    [1,4,3,12]
--    λ> [(a * x, b `div` x) | x <- it]
--    [(2,24),(8,6),(6,8),(24,2)]
-- A partir de la observación se construye la siguiente definición
 
pares4 :: Integer -> Integer -> [(Integer,Integer)]
pares4 a b
  | b `mod` a /= 0 = []
  | otherwise =
    [(a * x, b `div` x)
    | x <- map (product . concat)
               ((subsequences . group . primeFactors) (b `div` a))]
 
-- Nota. La función pares4 calcula el mismo conjunto que las anteriores,
-- pero no necesariamente en el mismo orde. Por ejemplo,
--    λ> pares3 2 60 
--    [(2,60),(4,30),(6,20),(10,12),(12,10),(20,6),(30,4),(60,2)]
--    λ> pares4 2 60 
--    [(2,60),(4,30),(6,20),(12,10),(10,12),(20,6),(30,4),(60,2)]
--    λ> pares3 2 60 == sort (pares4 2 60)
--    True
 
-- Comparacioń de eficiencia
--    λ> length (pares3 3 (product [3,5..17]))
--    64
--    (4.44 secs, 2,389,486,440 bytes)
--    λ> length (pares4 3 (product [3,5..17]))
--    64
--    (0.00 secs, 177,704 bytes)
 
-- Propiedades de equivalencia de pares
-- ====================================
 
prop_pares :: Integer -> Integer -> Property
prop_pares a b =
  a > 0 && b > 0 ==>
  all (== pares1 a b)
      [sort (f a b) | f <- [ pares2
                           , pares3
                           , pares4
                           ]]
 
prop_pares2 :: Integer -> Integer -> Property
prop_pares2 a b =
  a > 0 && b > 0 ==>
  all (== pares1 a (a * b))
      [sort (f a (a * b)) | f <- [ pares2
                                 , pares3
                                 , pares4
                                 ]]
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_pares
--    +++ OK, passed 100 tests.
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_pares
--    +++ OK, passed 100 tests.
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_pares2
--    +++ OK, passed 100 tests.
 
-- 1ª definición de nPares
-- =======================
 
nPares1 :: Integer -> Integer -> Integer
nPares1 a b = genericLength (pares4 a b)
 
-- 2ª definición de nPares
-- =======================
 
nPares2 :: Integer -> Integer -> Integer
nPares2 a b = 2^(length (nub (primeFactors (b `div` a))))
 
-- Comparación de eficiencia
--    λ> nPares1 3 (product [3,5..91])
--    8388608
--    (4.68 secs, 4,178,295,920 bytes)
--    λ> nPares2 3 (product [3,5..91])
--    8388608
--    (0.00 secs, 234,688 bytes)
 
-- Propiedad de equivalencia de nPares
-- ===================================
 
prop_nPares :: Integer -> Integer -> Property
prop_nPares a b =
  a > 0 && b > 0 ==>
  nPares1 a (a * b) == nPares2 a (a * b)
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_nPares
--    +++ OK, passed 100 tests.