Paridad del número de divisores

Definir la función

tal que (nDivisoresPar n) se verifica si n tiene un número par de divisores. Por ejemplo,

Soluciones

Solución en Maxima

Dígitos en la factorización

El enunciado del problema 652 de Números y algo más es el siguiente

Si factorizamos los factoriales de un número en función de sus divisores primos y sus potencias, ¿Cuál es el menor número n tal que entre los factores primos y los exponentes de estos, n! contiene los dígitos del cero al nueve? Por ejemplo

  • 6! = 2⁴x3²x5¹, le faltan los dígitos 0,6,7,8 y 9
  • 12! = 2¹⁰x3⁵x5²x7¹x11¹, le faltan los dígitos 4,6,8 y 9

Definir la función

tal que (digitosDeFactorizacion n) es el conjunto de los dígitos que aparecen en la factorización de n. Por ejemplo,

Usando la función anterior, calcular la solución del problema.

Comprobar con QuickCheck que si n es mayor que 100, entonces

Soluciones

La solución en Maxima

Puntos visibles en la cuadrícula de un plano

La cuadrícula entera de lado n, Cₙ, es el conjunto de los puntos (x,y) donde x e y son números enteros tales que 1 ≤ x, y ≤ n.

Un punto (x,y) de Cₙ es visible desde el origen si el máximo común divisor de x e y es 1. Por ejemplo, el punto (4,6) no es visible porque está ocultado por el (2,3); en cambio, el (2,3) sí es visible.

El conjunto de los puntos visibles en la cuadrícula entera de lado 6 son (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,3), (2,5), (3,1), (3,2), (3,4), (3,5), (4,1), (4,3), (4,5), (5,1), (5,2), (5,3), (5,4), (5,6), (6,1) y (6,5).

Definir la función

tal que (nVisibles n) es el número de los puntos visibles en la cuadrícula de lado n.Por ejemplo,

Soluciones

Referencias

Parte libre de cuadrados y parte cuadrada de un número

La parte libre de cuadrados de un número n es el producto de todos sus divisores primos con exponente impar en la factorización prima de n. Por ejemplo, la parte libre de cuadrados de 360 es 10 ya que 360 = 2³3²5 y 2.5 = 10; además, 360 = 10.6²

La parte cuadrada de un número n es el mayor número cuadrado que divide a n. Por ejemplo, la parte cuadrada de 360 es 6.

Definir las funciones

tales que

  • (parteLibre x) es la parte libre de x. Por ejemplo,

  • (parteCuadrada x) es la parte cuadrada de x. Por ejemplo,

Soluciones

Referencias

2016 es un número práctico

Un entero positivo n es un número práctico si todos los enteros positivos menores que él se pueden expresar como suma de distintos divisores de n. Por ejemplo, el 12 es un número práctico, ya que todos los enteros positivos menores que 12 se pueden expresar como suma de divisores de 12 (1, 2, 3, 4 y 6) sin usar ningún divisor más de una vez en cada suma:

En cambio, 14 no es un número práctico ya que 6 no se puede escribir como suma, con sumandos distintos, de divisores de 14.

Definir la función

tal que (esPractico n) se verifica si n es un número práctico. Por ejemplo,

Soluciones

Referencias

Basado en el artículo de Gaussianos Feliz Navidad y Feliz Año (número práctico) 2016.

Otras referencias