Sucesiones sin progresiones aritméticas de longitud 3

Tres números x, y, z está en progresión aritmética (PA) si existe un d tal que y = x+d y z = y+d. Por ejemplo, 1, 3, 5 están en PA ya que 3 = 1+2 y 5 = 3+2.

Se considera la sucesión donde cada uno de sus términos es el número natural tal que no está en PA con cualesquiera dos términos anteriores de la sucesión. Por ejemplo, si representamos por f(n) el n-ésimo término de la sucesión, entonces

Definir la sucesión

donde cada uno de sus términos es el menor número natural tal que no está en PA con cualesquiera dos términos anteriores de la sucesión. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

Quien se vive se pierde, Abel decía.
¡Oh, distancia, distancia!, que la estrella
que nadie toca, guía.
¿Quién navegó sin ella?

Antonio Machado

Las conjeturas de Catalan y de Pillai

La conjetura de Catalan, enunciada en 1844 por Eugène Charles Catalan y demostrada 2002 por Preda Mihăilescu1, afirma que

Las únicas dos potencias de números enteros consecutivos son 8 y 9 (que son respectivamente 2³ y 3²).

En otras palabras, la única solución entera de la ecuación

para x, a, y, b > 1 es x = 3, a = 2, y = 2, b = 3.

La conjetura de Pillai, propuesta por S.S. Pillai en 1942, generaliza este resultado y es un problema abierto. Afirma que cada entero se puede escribir sólo un número finito de veces como una diferencia de dos potencias perfectas. En otras palabras, para todo entero positivo n, el conjunto de soluciones de

para x, a, y, b > 1 es finito.

Por ejemplo, para n = 4, hay 3 soluciones

Las soluciones se pueden representar por la menor potencia (en el caso anterior, por 4, 32 y 121) ya que dado n (en el caso anterior es 4), la potencia mayor es la menor más n.

Definir las funciones

tales que

  • potenciasPerfectas es la lista de las potencias perfectas (es decir, de los números de la forma x^a con x y a mayores que 1). Por ejemplo,

  • (solucionesPillati n) es la lista de las menores potencias de las soluciones de la ecuación de Pillati x^a – y^b = n; es decir, es la lista de los u tales que u y u+n son potencias perfectas. Por ejemplo,

  • (solucionesPillatiAcotadas c n) es la lista de elementos de (solucionesPillati n) menores que n. Por ejemplo,

Soluciones

Referencia

Pensamiento

Y te enviaré mi canción:
«Se canta lo que se pierde»,
con un papagayo verde
que la diga en tu balcón.

Antonio Machado

La mayor potencia de dos no es divisor

Para cada número entero positivo n, se define el conjunto

de los números desde el 1 hasta n.

Definir la función

tal que (mayorPotenciaDeDosEnS n) es la mayor potencia de 2 en S(n). Por ejemplo,

Comprobar con QuickCheck que la mayor potencia de 2 en S(n) no divide a ningún otro elemento de S(n).

Soluciones

Referencia

Pensamiento

¡Sólo tu figura,
como una centella blanca,
en mi noche oscura.

Antonio Machado

Conjetura de Grimm

La conjetura de Grimm establece que a cada elemento de un conjunto de números compuestos consecutivos se puede asignar un número primo que lo divide, de forma que cada uno de los números primos elegidos es distinto de todos los demás. Más formalmente, si n+1, n+2, …, n+k son números compuestos, entonces existen números primos p(i), distintos entre sí, tales que p(i) divide a n+i para 1 ≤ i ≤ k.

Diremos que la lista ps = [p(1),…,p(k)] es una sucesión de Grim para la lista xs = [x(1),…,x(k)] si p(i) son números primos distintos y p(i) divide a x(i), para 1 ≤ i ≤ k. Por ejemplo, 2, 5, 13, 3, 7 es una sucesión de Grim de 24, 25, 26, 27, 28.

Definir las funciones

tales que

  • (compuestos n) es la mayor lista de números enteros consecutivos empezando en n. Por ejemplo,

  • (sucesionesDeGrim xs) es la lista de las sucesiones de Grim de xs. Por ejemplo,

Comprobar con QuickCheck la conjetura de Grim; es decir, para todo número n > 1, (sucesionesDeGrim (compuestos n)) es una lista no vacía.

Soluciones

Pensamiento

De encinar en encinar
se va fatigando el día.

Antonio Machado

Teorema de Carmichael

La sucesión de Fibonacci, F(n), es la siguiente sucesión infinita de números naturales:

La sucesión comieanza con los números 0 y 1. A partir de estos, cada término es la suma de los dos anteriores.

El teorema de Carmichael establece que para todo n mayor que 12, el n-ésimo número de Fibonacci F(n) tiene al menos un factor primo que no es factor de ninguno de los términos anteriores de la sucesión.

Si un número primo p es un factor de F(n) y no es factor de ningún F(m) con m < n, entonces se dice que p es un factor característico o un divisor primitivo de F(n).

Definir la función

tal que (factoresCaracteristicos n) es la lista de los factores característicos de F(n). Por ejemplo,

Comprobar con QuickCheck el teorema de Carmichael; es decir, para todo número entero (factoresCaracteristicos (13 + abs n)) es una lista no vacía.

Soluciones

Pensamiento

No puede ser
amor de tanta fortuna:
dos soledades en una.

Antonio Machado