Menu Close

Etiqueta: Listas infinitas

Sucesiones sin progresiones aritméticas de longitud 3

Tres números x, y, z está en progresión aritmética (PA) si existe un d tal que y = x+d y z = y+d. Por ejemplo, 1, 3, 5 están en PA ya que 3 = 1+2 y 5 = 3+2.

Se considera la sucesión donde cada uno de sus términos es el número natural tal que no está en PA con cualesquiera dos términos anteriores de la sucesión. Por ejemplo, si representamos por f(n) el n-ésimo término de la sucesión, entonces

f(0) = 0, que es el menor número natural;
f(1) = 1, que es el menor número natural que no está en la sucesión; 
f(2) = 3, ya que [0, 1, 2] están en PA y
                 [0, 1, 3] no están en PA;
f(3) = 4, ya que [0, 1, 4], [0, 3, 4] y [1, 3, 4] no están en PA;
f(4) = 9, ya que se descartan
          + el 5 porque [1, 3, 5] están en PA
          + el 6 porque [0, 3, 6] están en PA
          + el 7 porque [1, 4, 7] están en PA
          + el 8 porque [0, 4, 8] estan en PA
          y se acepta el 9 porque no están en PA niguna de [0,1,9],
          [0,3,9], [0,4,9], [1,3,9], [1,4,9], [3,4,9].

Definir la sucesión

   sucesionSin3enPA :: [Integer]

donde cada uno de sus términos es el menor número natural tal que no está en PA con cualesquiera dos términos anteriores de la sucesión. Por ejemplo,

   λ> take 20 sucesionSin3enPA
   [0,1,3,4,9,10,12,13,27,28,30,31,36,37,39,40,81,82,84,85]
   λ> sucesionSin3enPA !! 250
   3270

Soluciones

import Data.List ((\\), delete, tails)
 
-- 1ª solución
-- ===========
 
sucesionSin3enPA :: [Integer]
sucesionSin3enPA = aux []  
  where aux xs = x : aux (x:xs)
          where x = head (noEnPAConDos xs)
 
noEnPAConDos :: [Integer] -> [Integer]
noEnPAConDos xs = [z | z <- [0..]
                   , z `notElem` xs
                   , and [z - y /= y - x | x <- xs
                                         , y <- dropWhile (<= x) xs]]
 
-- 2ª solución
-- ===========
 
-- Si x, y, z están en progresión aritmética, entonces
--    y = (x + z) / 2
-- Por tanto,
--    z = 2 * y - x
--
-- Teniendo en cuenta la relación auterior se define (aux xs ys) tal que
-- xs es la lista de los términos actuales de la sucesión e ys es la
-- lista de los números que no están en PA con cualesquieras dos de xs.
 
sucesionSin3enPA2 :: [Integer]
sucesionSin3enPA2 = aux [] [0..] 
  where
    aux xs (y:ys) = y : aux (y:xs) (ys \\ [2 * y - x | x <- xs])
 
-- 3º solución
-- ===========
 
sucesionSin3enPA3 :: [Integer]
sucesionSin3enPA3 = 0 : aux [1]
  where aux (x:xs) = x : aux (xs ++ [3*x,3*x+1])
 
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> sucesionSin3enPA !! 70
--    741
--    (7.97 secs, 5,444,053,240 bytes)
--    λ> sucesionSin3enPA2 !! 70
--    741
--    (0.03 secs, 35,781,952 bytes)
--    λ> sucesionSin3enPA3 !! 70
--    741
--    (0.01 secs, 192,864 bytes)
--    
--    λ> sucesionSin3enPA2 !! 350
--    7410
--    (9.46 secs, 10,119,851,016 bytes)
--    λ> sucesionSin3enPA3 !! 350
--    7410
--    (0.01 secs, 1,931,296 bytes)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

Quien se vive se pierde, Abel decía.
¡Oh, distancia, distancia!, que la estrella
que nadie toca, guía.
¿Quién navegó sin ella?

Antonio Machado

Las conjeturas de Catalan y de Pillai

La conjetura de Catalan, enunciada en 1844 por Eugène Charles Catalan y demostrada 2002 por Preda Mihăilescu1, afirma que

Las únicas dos potencias de números enteros consecutivos son 8 y 9 (que son respectivamente 2³ y 3²).

En otras palabras, la única solución entera de la ecuación

   x^a - y^b = 1

para x, a, y, b > 1 es x = 3, a = 2, y = 2, b = 3.

La conjetura de Pillai, propuesta por S.S. Pillai en 1942, generaliza este resultado y es un problema abierto. Afirma que cada entero se puede escribir sólo un número finito de veces como una diferencia de dos potencias perfectas. En otras palabras, para todo entero positivo n, el conjunto de soluciones de

   x^a - y^b = n

para x, a, y, b > 1 es finito.

Por ejemplo, para n = 4, hay 3 soluciones

   (2,3, 2,2) ya que 2³ -  2² =   8 -   4 = 4
   (6,2, 2,5) ya que 6² -  2⁵ =  36 -  32 = 4
   (5,3,11,2) ya que 5³ - 11² = 125 - 121 = 4

Las soluciones se pueden representar por la menor potencia (en el caso anterior, por 4, 32 y 121) ya que dado n (en el caso anterior es 4), la potencia mayor es la menor más n.

Definir las funciones

   potenciasPerfectas :: [Integer]
   solucionesPillati :: Integer -> [Integer]
   solucionesPillatiAcotadas :: Integer -> Integer -> [Integer]

tales que

  • potenciasPerfectas es la lista de las potencias perfectas (es decir, de los números de la forma x^a con x y a mayores que 1). Por ejemplo,
     take 10 potenciasPerfectas  ==  [4,8,9,16,25,27,32,36,49,64]
     potenciasPerfectas !! 200   ==  28224
  • (solucionesPillati n) es la lista de las menores potencias de las soluciones de la ecuación de Pillati x^a – y^b = n; es decir, es la lista de los u tales que u y u+n son potencias perfectas. Por ejemplo,
     take 3 (solucionesPillati 4)  ==  [4,32,121]
     take 2 (solucionesPillati 5)  ==  [4,27]
     take 4 (solucionesPillati 7)  ==  [9,25,121,32761]
  • (solucionesPillatiAcotadas c n) es la lista de elementos de (solucionesPillati n) menores que n. Por ejemplo,
     solucionesPillatiAcotadas (10^3) 1  ==  [8]
     solucionesPillatiAcotadas (10^3) 2  ==  [25]
     solucionesPillatiAcotadas (10^3) 3  ==  [125]
     solucionesPillatiAcotadas (10^3) 4  ==  [4,32,121]
     solucionesPillatiAcotadas (10^3) 5  ==  [4,27]
     solucionesPillatiAcotadas (10^3) 6  ==  []
     solucionesPillatiAcotadas (10^3) 7  ==  [9,25,121]
     solucionesPillatiAcotadas (10^5) 7  ==  [9,25,121,32761]

Soluciones

import Data.List (group)
import Data.Numbers.Primes (primeFactors)
 
-- Definiciones de potenciasPerfectas
-- ==================================
 
-- 1ª definición
-- -------------
 
potenciasPerfectas1 :: [Integer]
potenciasPerfectas1 = filter esPotenciaPerfecta [4..]
 
-- (esPotenciaPerfecta x) se verifica si x es una potencia perfecta. Por
-- ejemplo, 
--    esPotenciaPerfecta 36  ==  True
--    esPotenciaPerfecta 72  ==  False
esPotenciaPerfecta :: Integer -> Bool
esPotenciaPerfecta = not . null. potenciasPerfectasDe 
 
-- (potenciasPerfectasDe x) es la lista de pares (a,b) tales que 
-- x = a^b. Por ejemplo,
--    potenciasPerfectasDe 64  ==  [(2,6),(4,3),(8,2)]
--    potenciasPerfectasDe 72  ==  []
potenciasPerfectasDe :: Integer -> [(Integer,Integer)]
potenciasPerfectasDe n = 
    [(m,k) | m <- takeWhile (\x -> x*x <= n) [2..]
           , k <- takeWhile (\x -> m^x <= n) [2..]
           , m^k == n]
 
-- 2ª definición
-- -------------
 
potenciasPerfectas2 :: [Integer]
potenciasPerfectas2 = [x | x <- [4..], esPotenciaPerfecta2 x]
 
-- (esPotenciaPerfecta2 x) se verifica si x es una potencia perfecta. Por
-- ejemplo, 
--    esPotenciaPerfecta2 36  ==  True
--    esPotenciaPerfecta2 72  ==  False
esPotenciaPerfecta2 :: Integer -> Bool
esPotenciaPerfecta2 x = mcd (exponentes x) > 1
 
-- (exponentes x) es la lista de los exponentes de l factorización prima
-- de x. Por ejemplos,
--    exponentes 36  ==  [2,2]
--    exponentes 72  ==  [3,2]
exponentes :: Integer -> [Int]
exponentes x = [length ys | ys <- group (primeFactors x)] 
 
-- (mcd xs) es el máximo común divisor de la lista xs. Por ejemplo,
--    mcd [4,6,10]  ==  2
--    mcd [4,5,10]  ==  1
mcd :: [Int] -> Int
mcd = foldl1 gcd
 
-- 3ª definición
-- -------------
 
potenciasPerfectas3 :: [Integer]
potenciasPerfectas3 = mezclaTodas potencias
 
-- potencias es la lista las listas de potencias de todos los números
-- mayores que 1 con exponentes mayores que 1. Por ejemplo,
--    λ> map (take 3) (take 4 potencias)
--    [[4,8,16],[9,27,81],[16,64,256],[25,125,625]]
potencias :: [[Integer]]
potencias = [[n^k | k <- [2..]] | n <- [2..]]
 
-- (mezclaTodas xss) es la mezcla ordenada sin repeticiones de las
-- listas ordenadas xss. Por ejemplo,
--    take 7 (mezclaTodas potencias)  ==  [4,8,9,16,25,27,32]
mezclaTodas :: Ord a => [[a]] -> [a]
mezclaTodas = foldr1 xmezcla
  where xmezcla (x:xs) ys = x : mezcla xs ys
 
-- (mezcla xs ys) es la mezcla ordenada sin repeticiones de las
-- listas ordenadas xs e ys. Por ejemplo,
--    take 7 (mezcla [2,5..] [4,6..])  ==  [2,4,5,6,8,10,11]
mezcla :: Ord a => [a] -> [a] -> [a]
mezcla (x:xs) (y:ys) | x < y  = x : mezcla xs (y:ys)
                     | x == y = x : mezcla xs ys
                     | x > y  = y : mezcla (x:xs) ys
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> potenciasPerfectas1 !! 200
--    28224
--    (7.24 secs, 9,245,991,160 bytes)
--    λ> potenciasPerfectas2 !! 200
--    28224
--    (0.30 secs, 814,597,152 bytes)
--    λ> potenciasPerfectas3 !! 200
--    28224
--    (0.01 secs, 7,061,120 bytes)
 
-- En lo que sigue se usa la 3ª definición
potenciasPerfectas :: [Integer]
potenciasPerfectas = potenciasPerfectas3
 
-- Definición de solucionesPillati
-- ===============================
 
solucionesPillati :: Integer -> [Integer]
solucionesPillati n =
  [x | x <- potenciasPerfectas
     , esPotenciaPerfecta2 (x+n)]
 
-- Definición de solucionesPillatiAcotadas
-- =======================================
 
solucionesPillatiAcotadas :: Integer -> Integer -> [Integer]
solucionesPillatiAcotadas c n =
  [x | x <- takeWhile (< (c-n)) potenciasPerfectas
     , esPotenciaPerfecta2 (x+n)]

Referencia

Pensamiento

Y te enviaré mi canción:
“Se canta lo que se pierde”,
con un papagayo verde
que la diga en tu balcón.

Antonio Machado

La mayor potencia de dos no es divisor

Para cada número entero positivo n, se define el conjunto

   S(n) = {1, 2, 3, ..., n}

de los números desde el 1 hasta n.

Definir la función

   mayorPotenciaDeDosEnS :: Integer -> Integer

tal que (mayorPotenciaDeDosEnS n) es la mayor potencia de 2 en S(n). Por ejemplo,

   mayorPotenciaDeDosEnS 3  ==  2
   mayorPotenciaDeDosEnS 4  ==  4

Comprobar con QuickCheck que la mayor potencia de 2 en S(n) no divide a ningún otro elemento de S(n).

Soluciones

import Data.List (delete)
import Test.QuickCheck
 
mayorPotenciaDeDosEnS :: Integer -> Integer
mayorPotenciaDeDosEnS n =
  last (takeWhile (<=n) potenciasDeDos)
 
-- potenciasDeDos es la lista de las potencias de 2. Por ejemplo,
--    take 5 potenciasDeDos  ==  [1,2,4,8,16]
potenciasDeDos :: [Integer]
potenciasDeDos = iterate (*2) 1
 
-- La propiedad es
prop_mayorPotenciaDeDosEnS :: Integer -> Property
prop_mayorPotenciaDeDosEnS n =
  n > 0 ==> all (x `noDivide`) (delete x [1..n])
  where x = mayorPotenciaDeDosEnS n
        x `noDivide` y = y `mod` x /= 0
 
-- La comprobación es
--    λ> quickCheck prop_mayorPotenciaDeDosEnS
--    +++ OK, passed 100 tests.

Referencia

Pensamiento

¡Sólo tu figura,
como una centella blanca,
en mi noche oscura.

Antonio Machado

Conjetura de Grimm

La conjetura de Grimm establece que a cada elemento de un conjunto de números compuestos consecutivos se puede asignar un número primo que lo divide, de forma que cada uno de los números primos elegidos es distinto de todos los demás. Más formalmente, si n+1, n+2, …, n+k son números compuestos, entonces existen números primos p(i), distintos entre sí, tales que p(i) divide a n+i para 1 ≤ i ≤ k.

Diremos que la lista ps = [p(1),…,p(k)] es una sucesión de Grim para la lista xs = [x(1),…,x(k)] si p(i) son números primos distintos y p(i) divide a x(i), para 1 ≤ i ≤ k. Por ejemplo, 2, 5, 13, 3, 7 es una sucesión de Grim de 24, 25, 26, 27, 28.

Definir las funciones

   compuestos :: Integer -> [Integer]
   sucesionesDeGrim :: [Integer] -> [[Integer]]

tales que

  • (compuestos n) es la mayor lista de números enteros consecutivos empezando en n. Por ejemplo,
     compuestos 24  ==  [24,25,26,27,28]
     compuestos  8  ==  [8,9,10]
     compuestos 15  ==  [15,16]
     compuestos 16  ==  [16]
     compuestos 17  ==  []
  • (sucesionesDeGrim xs) es la lista de las sucesiones de Grim de xs. Por ejemplo,
     sucesionesDeGrim [15,16]          == [[3,2],[5,2]]
     sucesionesDeGrim [8,9,10]         == [[2,3,5]]
     sucesionesDeGrim [9,10]           == [[3,2],[3,5]]
     sucesionesDeGrim [24,25,26,27,28] == [[2,5,13,3,7]]
     sucesionesDeGrim [25,26,27,28]    == [[5,2,3,7],[5,13,3,2],[5,13,3,7]]

Comprobar con QuickCheck la conjetura de Grim; es decir, para todo número n > 1, (sucesionesDeGrim (compuestos n)) es una lista no vacía.

Soluciones

import Data.List (nub)
import Data.Numbers.Primes (isPrime, primeFactors)
import Test.QuickCheck
 
compuestos :: Integer -> [Integer]
compuestos n = takeWhile (not . isPrime) [n..]
 
sucesionesDeGrim :: [Integer] -> [[Integer]]
sucesionesDeGrim [] = [[]]
sucesionesDeGrim (x:xs) =
  [y:ys | y <- divisoresPrimos x
        , ys <- sucesionesDeGrim xs
        , y `notElem` ys]
 
-- (divisoresPrimos n) es la lista de los divisores primos de n. Por
-- ejemplo, 
--    divisoresPrimos 60  ==  [2,3,5]
divisoresPrimos :: Integer -> [Integer]
divisoresPrimos = nub . primeFactors
 
-- La propiedad es
conjeturaDeGrim :: Integer -> Property
conjeturaDeGrim n =
  n > 1 ==> not (null (sucesionesDeGrim (compuestos n))) 
 
-- La comprobación es
--    λ> quickCheck conjeturaDeGrim
--    +++ OK, passed 100 tests.

Pensamiento

De encinar en encinar
se va fatigando el día.

Antonio Machado

Teorema de Carmichael

La sucesión de Fibonacci, F(n), es la siguiente sucesión infinita de números naturales:

   0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, ...

La sucesión comieanza con los números 0 y 1. A partir de estos, cada término es la suma de los dos anteriores.

El teorema de Carmichael establece que para todo n mayor que 12, el n-ésimo número de Fibonacci F(n) tiene al menos un factor primo que no es factor de ninguno de los términos anteriores de la sucesión.

Si un número primo p es un factor de F(n) y no es factor de ningún F(m) con m < n, entonces se dice que p es un factor característico o un divisor primitivo de F(n).

Definir la función

   factoresCaracteristicos :: Int -> [Integer]

tal que (factoresCaracteristicos n) es la lista de los factores característicos de F(n). Por ejemplo,

   factoresCaracteristicos  4  ==  [3]
   factoresCaracteristicos  6  ==  []
   factoresCaracteristicos 19  ==  [37,113]
   factoresCaracteristicos 20  ==  [41]
   factoresCaracteristicos 37  ==  [73,149,2221]

Comprobar con QuickCheck el teorema de Carmichael; es decir, para todo número entero (factoresCaracteristicos (13 + abs n)) es una lista no vacía.

Soluciones

import Data.List (nub)
import Data.Numbers.Primes
import Test.QuickCheck
 
factoresCaracteristicos :: Int -> [Integer]
factoresCaracteristicos n =
  [x | x <- factoresPrimos (fib n)
     , and [fib m `mod` x /= 0 | m <- [1..n-1]]]
 
-- (fib n) es el n-ésimo término de la sucesión de Fibonacci. Por
-- ejemplo,
--    fib 6  ==  8
fib :: Int -> Integer
fib n = fibs !! n
 
-- fibs es la lista de términos de la sucesión de Fibonacci. Por ejemplo,
--    λ> take 20 fibs
--    [0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181]
fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
 
-- (factoresPrimos n) es la lista de los factores primos de n. Por
-- ejemplo, 
--    factoresPrimos 600  ==  [2,3,5]
factoresPrimos :: Integer -> [Integer]
factoresPrimos 0 = []
factoresPrimos n = nub (primeFactors n)
 
-- Teorema
-- =======
 
-- El teorema es
teorema_de_Carmichael :: Int -> Bool
teorema_de_Carmichael n =
  not (null (factoresCaracteristicos n'))
  where n' = 13 + abs n
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=50}) teorema_de_Carmichael
--    +++ OK, passed 100 tests.

Pensamiento

No puede ser
amor de tanta fortuna:
dos soledades en una.

Antonio Machado