Sucesión de raíces enteras de los números primos

Definir las siguientes funciones

tales que

  • raicesEnterasPrimos es la sucesión de las raíces enteras (por defecto) de los números primos. Por ejemplo,

  • (posiciones x) es el par formado por la menor y la mayor posición de x en la sucesión de las raíces enteras de los números primos. Por ejemplo,

  • (frecuencia x) es el número de veces que aparece x en la sucesión de las raíces enteras de los números primos. Por ejemplo,

  • (grafica_raicesEnterasPrimos n) dibuja la gráfica de los n primeros términos de la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_raicesEnterasPrimos 200) dibuja
    Sucesion_de_raices_enteras_de_primos_1
  • (grafica_posicionesIniciales n) dibuja la gráfica de las menores posiciones de los n primeros números en la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_posicionesIniciales 200) dibuja
    Sucesion_de_raices_enteras_de_primos_2
  • (grafica_frecuencia n) dibuja la gráfica de las frecuencia de los n primeros números en la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_frecuencia 200) dibuja
    Sucesion_de_raices_enteras_de_primos_3

Soluciones

Reconocimiento de relaciones funcionales entre dos conjuntos

Una relación binaria entre dos conjuntos A y B se puede representar mediante un conjunto de pares (a,b) tales que a ∈ A y b ∈ B. Por ejemplo, la relación < entre A = {1,5,3} y B = {0,2,4} se representa por {(1,2),(1,4),(3,4)}.

Una relación R entre A y B es funcional si cada elemento de A está relacionado mediante R como máximo con un elemento de B. Por ejemplo, [(2,4),(1,5),(3,4)] es funcional, pero [(3,4),(1,4),(1,2),(3,4)] no lo es.

Definir la función

tal que (esFuncional r) se verifica si la relación r es funcional. Por ejemplo,

Soluciones

Biparticiones de un número

Definir la función

tal que (biparticiones n) es la lista de pares de números formados por las primeras cifras de n y las restantes. Por ejemplo,

Soluciones

El problema de las celebridades

La celebridad de una reunión es una persona al que todos conocen pero que no conoce a nadie. Por ejemplo, si en la reunión hay tres personas tales que la 1 conoce a la 3 y la 2 conoce a la 1 y a la 3, entonces la celebridad de la reunión es la 3.

La relación de conocimiento se puede representar mediante una lista de pares (x,y) indicando que x conoce a y. Por ejemplo, ka reunioń anterior se puede representar por [(1,3),(2,1),(2,3)].

Definir la función

tal que (celebridad r) es el justo la celebridad de r, si en r hay una celebridad y Nothing, en caso contrario. Por ejemplo,

Soluciones

[schedule expon=’2017-05-16′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 16 de mayo.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2017-05-16′ at=»06:00″]

[/schedule]

Codificación matricial

El procedimiento de codificación matricial se puede entender siguiendo la codificación del mensaje "todoparanada" como se muestra a continuación:

  • Se calcula la longitud L del mensaje. En el ejemplo es L es 12.
  • Se calcula el menor entero positivo N cuyo cuadrado es mayor o igual que L. En el ejemplo N es 4.
  • Se extiende el mensaje con N²-L asteriscos. En el ejemplo, el mensaje extendido es "todoparanada****"
  • Con el mensaje extendido se forma una matriz cuadrada NxN. En el ejemplo la matriz es

  • Se rota 90º la matriz del mensaje extendido. En el ejemplo, la matriz rotada es

  • Se calculan los elementos de la matriz rotada. En el ejemplo, los elementos son "*npt*aap*drd*aao"
  • El mensaje codificado se obtiene eliminando los asteriscos de los elementos de la matriz rotada. En el ejemplo, "nptaapdrdaao".

Definir la función

tal que (codificado cs) es el mensaje obtenido aplicando la codificación matricial al mensaje cs. Por ejemplo,

Nota: Este ejercicio está basado en el problema Secret Message de Kattis.

Soluciones