El teorema de Navidad de Fermat

El 25 de diciembre de 1640, en una carta a Mersenne, Fermat demostró la conjetura de Girard: todo primo de la forma 4n+1 puede expresarse de manera única como suma de dos cuadrados. Por eso es conocido como el teorema de Navidad de Fermat.

Definir las funciones

tales que

  • (representaciones n) es la lista de pares de números naturales (x,y) tales que n = x^2 + y^2 con x <= y. Por ejemplo.

  • primosImparesConRepresentacionUnica es la lista de los números primos impares que se pueden escribir exactamente de una manera como suma de cuadrados de pares de números naturales (x,y) con x <= y. Por ejemplo,

  • primos4nM1 es la lista de los números primos que se pueden escribir como uno más un múltiplo de 4 (es decir, que son congruentes con 1 módulo 4). Por ejemplo,

Comprobar con QuickCheck el torema de Navidad de Fermat; es decir, que para todo número n, los n-ésimos elementos de primosImparesConRepresentacionUnica y de primos4nM1 son iguales.

Soluciones

Pensamiento

– ¡Cuándo llegará otro día!
– Hoy es siempre todavía.

Antonio Machado

Divisores compuestos

Definir la función

tal que (divisoresCompuestos x) es la lista de los divisores de x que son números compuestos (es decir, números mayores que 1 que no son primos). Por ejemplo,

Soluciones

Pensamiento

«La verdad del hombre empieza donde acaba su propia tontería, pero la
tontería del hombre es inagotable.»

Antonio Machado

Números que no son cuadrados

Definir las funciones

tales que

  • noCuadrados es la lista de los números naturales que no son cuadrados. Por ejemplo,

  • (graficaNoCuadrados n) dibuja las diferencias entre los n primeros elementos de noCuadrados y sus posiciones. Por ejemplo, (graficaNoCuadrados 300) dibuja
    Numeros_que_no_son_cuadrados_300
    (graficaNoCuadrados 3000) dibuja
    Numeros_que_no_son_cuadrados_3000
    (graficaNoCuadrados 30000) dibuja
    Numeros_que_no_son_cuadrados_30000

Comprobar con QuickCheck que el término de noCuadrados en la posición n-1 es (n + floor(1/2 + sqrt(n))).

Soluciones

Fractal hexagonal

Escribir, usando CodeWorld, un programa para dibujar el fractal hexagonal que se muestra en la siguiente animación
Fractal_hexagonal

Las 4 primeras fases de la animación son

  • Fase 0:
    Fractal_hexagonal_0
  • Fase 1:
    Fractal_hexagonal_1
  • Fase 2:
    Fractal_hexagonal_2
  • Fase 3:
    Fractal_hexagonal_3

Nota: Este ejercicio ha sido propuesto por Agustín Martín Aguera.

Soluciones

Sucesión de raíces enteras de los números primos

Definir las siguientes funciones

tales que

  • raicesEnterasPrimos es la sucesión de las raíces enteras (por defecto) de los números primos. Por ejemplo,

  • (posiciones x) es el par formado por la menor y la mayor posición de x en la sucesión de las raíces enteras de los números primos. Por ejemplo,

  • (frecuencia x) es el número de veces que aparece x en la sucesión de las raíces enteras de los números primos. Por ejemplo,

  • (grafica_raicesEnterasPrimos n) dibuja la gráfica de los n primeros términos de la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_raicesEnterasPrimos 200) dibuja
    Sucesion_de_raices_enteras_de_primos_1
  • (grafica_posicionesIniciales n) dibuja la gráfica de las menores posiciones de los n primeros números en la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_posicionesIniciales 200) dibuja
    Sucesion_de_raices_enteras_de_primos_2
  • (grafica_frecuencia n) dibuja la gráfica de las frecuencia de los n primeros números en la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_frecuencia 200) dibuja
    Sucesion_de_raices_enteras_de_primos_3

Soluciones