Menu Close

Etiqueta: concat

Mezcla de listas

Definir la función

   mezcla :: [[a]] -> [a]

tal que (mezcla xss) es la lista tomando sucesivamente los elementos de xss en la misma posición. Cuando una de las listas de xss es vacía, se continua con las restantes. por ejemplo,

   mezcla [[1,2],[3..7],[8..10]]            ==  [1,3,8,2,4,9,5,10,6,7]
   mezcla ["Estamos","en","2019"]           ==  "Ee2sn0t1a9mos"
   take 9 (mezcla [[3,6..],[5,7..],[0,1]])  ==  [3,5,0,6,7,1,9,9,12]

Soluciones

import Data.List (transpose)
 
-- 1ª solución
mezcla :: [[a]] -> [a]
mezcla xss = aux (filter (not . null) xss)
  where
    aux []  = []
    aux yss = map head yss ++ mezcla (map tail yss)
 
-- 2ª solución
mezcla2 :: [[a]] -> [a]
mezcla2 = aux . filter (not . null)
  where
    aux []  = []
    aux yss = map head yss ++ mezcla (map tail yss)
 
-- 3ª solución
mezcla3 :: [[a]] -> [a]
mezcla3 = concatMap primeros . takeWhile (not . null) . iterate restos
  where primeros = map head . filter (not . null)
        restos   = map tail . filter (not . null)
 
-- 4ª solución
mezcla4 :: [[a]] -> [a]
mezcla4 = concat . transpose

Pensamiento

Cuatro cosas tiene el hombre
que no sirven en la mar:
ancla, gobernalle y remos,
y miedo de naufragar.

Antonio Machado

Cálculo de pi mediante la serie de Nilakantha

Una serie infinita para el cálculo de pi, publicada por Nilakantha en el siglo XV, es

Definir las funciones

   aproximacionPi :: Int -> Double
   tabla          :: FilePath -> [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi obtenido sumando los n primeros términos de la serie de Nilakantha. Por ejemplo,
     aproximacionPi 0        ==  3.0
     aproximacionPi 1        ==  3.1666666666666665
     aproximacionPi 2        ==  3.1333333333333333
     aproximacionPi 3        ==  3.145238095238095
     aproximacionPi 4        ==  3.1396825396825396
     aproximacionPi 5        ==  3.1427128427128426
     aproximacionPi 10       ==  3.1414067184965018
     aproximacionPi 100      ==  3.1415924109719824
     aproximacionPi 1000     ==  3.141592653340544
     aproximacionPi 10000    ==  3.141592653589538
     aproximacionPi 100000   ==  3.1415926535897865
     aproximacionPi 1000000  ==  3.141592653589787
     pi                      ==  3.141592653589793
  • (tabla f ns) escribe en el fichero f las n-ésimas aproximaciones de pi, donde n toma los valores de la lista ns, junto con sus errores. Por ejemplo, al evaluar la expresión
     tabla "AproximacionesPi.txt" [0,10..100]

hace que el contenido del fichero “AproximacionesPi.txt” sea

+------+----------------+----------------+
| n    | Aproximación   | Error          |
+------+----------------+----------------+
|    0 | 3.000000000000 | 0.141592653590 |
|   10 | 3.141406718497 | 0.000185935093 |
|   20 | 3.141565734659 | 0.000026918931 |
|   30 | 3.141584272675 | 0.000008380915 |
|   40 | 3.141589028941 | 0.000003624649 |
|   50 | 3.141590769850 | 0.000001883740 |
|   60 | 3.141591552546 | 0.000001101044 |
|   70 | 3.141591955265 | 0.000000698325 |
|   80 | 3.141592183260 | 0.000000470330 |
|   90 | 3.141592321886 | 0.000000331704 |
|  100 | 3.141592410972 | 0.000000242618 |
+------+----------------+----------------+

al evaluar la expresión

     tabla "AproximacionesPi.txt" [0,500..5000]

hace que el contenido del fichero “AproximacionesPi.txt” sea

+------+----------------+----------------+
| n    | Aproximación   | Error          |
+------+----------------+----------------+
|    0 | 3.000000000000 | 0.141592653590 |
|  500 | 3.141592651602 | 0.000000001988 |
| 1000 | 3.141592653341 | 0.000000000249 |
| 1500 | 3.141592653516 | 0.000000000074 |
| 2000 | 3.141592653559 | 0.000000000031 |
| 2500 | 3.141592653574 | 0.000000000016 |
| 3000 | 3.141592653581 | 0.000000000009 |
| 3500 | 3.141592653584 | 0.000000000006 |
| 4000 | 3.141592653586 | 0.000000000004 |
| 4500 | 3.141592653587 | 0.000000000003 |
| 5000 | 3.141592653588 | 0.000000000002 |
+------+----------------+----------------+

Soluciones

import Text.Printf
 
-- 1ª solución
-- ===========
 
aproximacionPi :: Int -> Double
aproximacionPi n = serieNilakantha !! n
 
serieNilakantha :: [Double]
serieNilakantha = scanl1 (+) terminosNilakantha
 
terminosNilakantha :: [Double]
terminosNilakantha = zipWith (/) numeradores denominadores
  where numeradores   = 3 : cycle [4,-4]
        denominadores = 1 : [n*(n+1)*(n+2) | n <- [2,4..]]
 
-- 2ª solución
-- ===========
 
aproximacionPi2 :: Int -> Double
aproximacionPi2 = aux 3 2 1
  where aux x _ _ 0 = x
        aux x y z m =
          aux (x+4/product[y..y+2]*z) (y+2) (negate z) (m-1)
 
-- 3ª solución
-- ===========
 
aproximacionPi3 :: Int -> Double
aproximacionPi3 x =
  3 + sum [(((-1)**(n+1))*4)/(2*n*(2*n+1)*(2*n+2))
          | n <- [1..fromIntegral x]]
 
 
-- Comparación de eficiencia
-- =========================
 
--    λ> aproximacionPi (10^6)
--    3.141592653589787
--    (1.35 secs, 729,373,160 bytes)
--    λ> aproximacionPi2 (10^6)
--    3.141592653589787
--    (2.96 secs, 2,161,766,096 bytes)
--    λ> aproximacionPi3 (10^6)
--    3.1415926535897913
--    (2.02 secs, 1,121,372,536 bytes)
 
-- Definicioń de tabla
-- ===================
 
tabla :: FilePath -> [Int] -> IO ()
tabla f ns = writeFile f (tablaAux ns)
 
tablaAux :: [Int] -> String
tablaAux ns =
     linea
  ++ cabecera
  ++ linea
  ++ concat [printf "| %4d | %.12f | %.12f |\n" n a e
            | n <- ns
            , let a = aproximacionPi n
            , let e = abs (pi - a)]
  ++ linea
 
linea :: String
linea = "+------+----------------+----------------+\n"
 
cabecera :: String
cabecera = "| n    | Aproximación   | Error          |\n"

Pensamiento

Bueno es saber que los vasos
nos sirven para beber;
lo malo es que no sabemos
para que sirve la sed.

Antonio Machado

Impares en filas del triángulo de Pascal

El triángulo de Pascal es un triángulo de números

         1
        1 1
       1 2 1
     1  3 3  1
    1 4  6  4 1
   1 5 10 10 5 1
  ...............

construido de la siguiente forma

  • la primera fila está formada por el número 1;
  • las filas siguientes se construyen sumando los números adyacentes de la fila superior y añadiendo un 1 al principio y al final de la fila.

Definir las funciones

   imparesPascal          :: [[Integer]]
   nImparesPascal         :: [Int]
   grafica_nImparesPascal :: Int -> IO ()

tales que

  • imparesPascal es la lista de los elementos impares en cada una de las filas del triángulo de Pascal. Por ejemplo,
     λ> take 8 imparesPascal
     [[1],[1,1],[1,1],[1,3,3,1],[1,1],[1,5,5,1],[1,15,15,1],[1,7,21,35,35,21,7,1]]
  • nImparesPascal es la lista del número de elementos impares en cada una de las filas del triángulo de Pascal. Por ejemplo,
     λ> take 32 nImparesPascal
     [1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32]
     λ> maximum (take (10^6) nImparesPascal3)
     524288
  • (grafica_nImparesPascal n) dibuja la gráfica de los n primeros términos de nImparesPascal. Por ejemplo, (grafica_nImparesPascal 50) dibuja

y (grafica_nImparesPascal 100) dibuja

Comprobar con QuickCheck que todos los elementos de nImparesPascal son potencias de dos.

Soluciones

import Data.List (transpose)
import Test.QuickCheck
import Graphics.Gnuplot.Simple
 
-- 1ª definición de imparesPascal
-- ==============================
 
imparesPascal :: [[Integer]]
imparesPascal =
  map (filter odd) pascal
 
-- pascal es la lista de las filas del triángulo de Pascal. Por ejemplo,
--    λ> take 7 pascal
--    [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1],[1,5,10,10,5,1],[1,6,15,20,15,6,1]]
pascal :: [[Integer]]
pascal = [1] : map f pascal
  where f xs = zipWith (+) (0:xs) (xs++[0])
 
-- 2ª definición de imparesPascal
-- ==============================
 
imparesPascal2 :: [[Integer]]
imparesPascal2 =
  map (filter odd) pascal
 
pascal2 :: [[Integer]]
pascal2 = iterate f [1]
  where f xs = zipWith (+) (0:xs) (xs++[0])
 
-- 1ª definición de nImparesPascal
-- ===============================
 
nImparesPascal :: [Int]
nImparesPascal =
  map length imparesPascal
 
-- 2ª definición de nImparesPascal
-- ===============================
 
nImparesPascal2 :: [Int]
nImparesPascal2 =
  map (length . filter odd) imparesPascal
 
-- 3ª definición de nImparesPascal
-- ===============================
 
--    λ> take 32 nImparesPascal2
--    [1,2,
--     2,4,
--     2,4,4,8,
--     2,4,4,8,4,8,8,16,
--     2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32]
nImparesPascal3 :: [Int]
nImparesPascal3 = 1 : zs
  where zs = 2 : concat (transpose [zs, map (*2) zs])
 
-- Definición de grafica_nImparesPascal
-- =========================================
 
grafica_nImparesPascal :: Int -> IO ()
grafica_nImparesPascal n =
  plotListStyle
    [ Key Nothing
    , PNG ("Impares_en_filas_del_triangulo_de_Pascal_" ++ show n ++ ".png")
    ]
    (defaultStyle {plotType = LinesPoints})
    (take n nImparesPascal3)
 
-- Propiedad de nImparesPascal
-- ===========================
 
-- La propiedad es
prop_nImparesPascal :: Positive Int -> Bool
prop_nImparesPascal (Positive n) =
  esPotenciaDeDos (nImparesPascal3 !! n)
 
-- (esPotenciaDeDos n) se verifica si n es una potencia de dos. Por
-- ejemplo,
--    esPotenciaDeDos 16  ==  True
--    esPotenciaDeDos 18  ==  False
esPotenciaDeDos :: Int -> Bool
esPotenciaDeDos 1 = True
esPotenciaDeDos n = even n && esPotenciaDeDos (n `div` 2)
 
-- La comprobación es
--    λ> quickCheck prop_nImparesPascal
--    +++ OK, passed 100 tests.

Pensamiento

De lo que llaman los hombres
virtud, justicia y bondad,
una mitad es envidia,
y la otra no es caridad.

Antonio Machado

Recorrido de árboles en espiral

Los árboles se pueden representar mediante el siguiente tipo de datos

   data Arbol a = N a [Arbol a]
     deriving Show

Por ejemplo, los árboles

         1             1             1  
        /  \          / \           / \ 
       /    \        8   3         8   3
      2      3          /|\       /|\  |
     / \    / \        4 5 6     4 5 6 7
    4   5  6   7

se representan por

   ej1, ej2, ej3 :: Arbol Int
   ej1 = N 1 [N 2 [N 4 [], N 5 []], N 3 [N 6 [], N 7 []]]
   ej2 = N 1 [N 8 [], N 3 [N 4 [], N 5 [], N 6 []]]
   ej3 = N 1 [N 8 [N 4 [], N 5 [], N 6 []], N 3 [N 7 []]]

Definir la función

   espiral :: Arbol a -> [a]

tal que (espiral x) es la lista de los nodos del árbol x recorridos en espiral; es decir, la raíz de x, los nodos del primer nivel de izquierda a derecha, los nodos del segundo nivel de derecha a izquierda y así sucesivamente. Por ejemplo,

   espiral ej1  ==  [1,2,3,7,6,5,4]
   espiral ej2  ==  [1,8,3,6,5,4]
   espiral ej3  ==  [1,8,3,7,6,5,4]

Soluciones

data Arbol a = N a [Arbol a]
  deriving Show
 
ej1, ej2, ej3 :: Arbol Int
ej1 = N 1 [N 2 [N 4 [], N 5 []], N 3 [N 6 [], N 7 []]]
ej2 = N 1 [N 8 [], N 3 [N 4 [], N 5 [], N 6 []]]
ej3 = N 1 [N 8 [N 4 [], N 5 [], N 6 []], N 3 [N 7 []]]
 
-- 1ª solución
-- ===========
 
espiral :: Arbol a -> [a]
espiral x =
  concat [f xs | (f,xs) <- zip (cycle [reverse,id]) (niveles x)]
 
-- (niveles x) es la lista de los niveles del árbol x. Por ejemplo, 
--    niveles ej1 == [[1],[8,3],[4]]
--    niveles ej2 == [[1],[8,3],[4,5,6]]
--    niveles ej3 == [[1],[8,3],[4,5,6,7]]
niveles :: Arbol a -> [[a]]
niveles x = takeWhile (not . null) [nivel n x | n <- [0..]]
 
-- (nivel n x) es el nivel de nivel n del árbol x. Por ejemplo,
--    nivel 0 ej1  ==  [1]
--    nivel 1 ej1  ==  [8,3]
--    nivel 2 ej1  ==  [4]
--    nivel 4 ej1  ==  []
nivel :: Int -> Arbol a ->  [a]
nivel 0 (N x _)  = [x]
nivel n (N _ xs) = concatMap (nivel (n-1)) xs
 
-- 2ª solución
-- ===========
 
espiral2 :: Arbol a -> [a]
espiral2 = 
  concat . zipWith ($) (cycle [reverse,id]) . niveles
 
-- 3ª solución
-- ===========
 
espiral3 :: Arbol a -> [a]
espiral3 = concat . zipWith ($) (cycle [reverse,id]) . niveles3
 
niveles3 :: Arbol a -> [[a]]
niveles3 t = map (map raiz)
           . takeWhile (not . null)
           . iterate (concatMap subBosque) $ [t]
 
raiz :: Arbol a -> a
raiz (N x _) = x
 
subBosque :: Arbol a -> [Arbol a]
subBosque (N _ ts) = ts
 
-- 4ª solución
-- ===========
 
espiral4 :: Arbol a -> [a]
espiral4 = concat . zipWith ($) (cycle [reverse,id]) . niveles4
 
niveles4 :: Arbol a -> [[a]]
niveles4 = map (map raiz)
         . takeWhile (not . null)
         . iterate (concatMap subBosque)
         . return  
 
-- 5ª definición
-- =============
 
espiral5 :: Arbol a -> [a]
espiral5 x = concat $ zipWith ($) (cycle [reverse,id]) $ niveles5 [x]
 
niveles5 :: [Arbol a] -> [[a]]
niveles5 [] = []
niveles5 xs = a : niveles5 (concat b)
  where (a,b) = unzip $ map (\(N x y) -> (x,y)) xs
 
-- 6ª definición
-- =============
 
espiral6 :: Arbol a -> [a]
espiral6 = concat . zipWith ($) (cycle [reverse,id]) . niveles5 . return

Pensamiento

Dice la monotonía
del agua clara al caer:
un día es como otro día;
hoy es lo mismo que ayer.

Antonio Machado

Sucesión triangular

La sucesión triangular es la obtenida concatenando las listas [1], [1,2], [1,2,3], [1,2,3,4], …. Sus primeros términos son 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, …

Definir las funciones

   sucTriangular        :: [Integer]
   terminoSucTriangular :: Int -> Integer
   graficaSucTriangular :: Int -> IO ()

tales que

  • sucTriangular es la lista de los términos de la sucesión triangular. Por ejemplo,
     λ> take 30 sucTriangular
     [1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,1,2,3,4,5,6,1,2,3,4,5,6,7,1,2]
  • (terminoSucTriangular n) es el término n-ésimo de la sucesión triangular. Por ejemplo,
     terminoSucTriangular 5       ==  3
     terminoSucTriangular 10      ==  1
     terminoSucTriangular 20      ==  6
     terminoSucTriangular 100     ==  10
     terminoSucTriangular 1001    ==  12
     terminoSucTriangular (10^5)  ==  320
  • (graficaSucTriangular n) dibuja la gráfica de los n primeros términos de la sucesión triangular. Por ejemplo, (graficaSucTriangular 300) dibuja

Soluciones

import Data.List (inits)
import Test.QuickCheck
import Graphics.Gnuplot.Simple
 
-- 1ª definición de sucTriangular 
-- ==============================
 
sucTriangular :: [Integer]
sucTriangular =
  concat [[1..n] | n <- [1..]]
 
-- 2ª definición de sucTriangular 
-- ==============================
 
sucTriangular2 :: [Integer]
sucTriangular2 =
  [x | n <- [1..], x <- [1..n]]
 
-- 3ª definición de sucTriangular 
-- ==============================
 
sucTriangular3 :: [Integer]
sucTriangular3 =
  concat (tail (inits [1..]))
 
-- 1ª definición de terminoSucTriangular
-- =====================================
 
terminoSucTriangular :: Int -> Integer
terminoSucTriangular k =
  sucTriangular !! k
 
-- 2ª definición de terminoSucTriangular
-- =====================================
 
terminoSucTriangular2 :: Int -> Integer
terminoSucTriangular2 k =
  sucTriangular2 !! k
 
-- 3ª definición de terminoSucTriangular
-- =====================================
 
terminoSucTriangular3 :: Int -> Integer
terminoSucTriangular3 k =
  sucTriangular3 !! k
 
-- Equivalencia de definiciones
-- ============================
 
-- La propiedad es
prop_terminoTriangular :: Positive Int -> Bool
prop_terminoTriangular (Positive n) =
  terminoSucTriangular n == terminoSucTriangular2 n &&
  terminoSucTriangular n == terminoSucTriangular3 n
 
-- La comprobación es
--      λ> quickCheck prop_terminoTriangular
--      +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
--    λ> terminoSucTriangular (3*10^6)
--    2425
--    (2.07 secs, 384,707,936 bytes)
--    λ> terminoSucTriangular2 (3*10^6)
--    2425
--    (2.22 secs, 432,571,208 bytes)
--    λ> terminoSucTriangular3 (3*10^6)
--    2425
--    (0.69 secs, 311,259,504 bytes)
 
-- Definición de graficaSucTriangular
-- ==================================
 
graficaSucTriangular :: Int -> IO ()
graficaSucTriangular n =
  plotList [ Key Nothing
           , PNG "Sucesion_triangular.png"
           ]
           (take n sucTriangular)

Pensamiento

Nadie debe asustarse de lo que piensa, aunque su pensar aparezca en pugna con las leyes más elementales de la lógica. Porque todo ha de ser pensado por alguien, y el mayor desatino puede ser un punto de vista de lo real.

Antonio Machado