Menu Close

Número de triangulaciones de un polígono

Una triangulación de un polígono es una división del área en un conjunto de triángulos, de forma que la unión de todos ellos es igual al polígono original, y cualquier par de triángulos es disjunto o comparte únicamente un vértice o un lado. En el caso de polígonos convexos, la cantidad de triangulaciones posibles depende únicamente del número de vértices del polígono.

Si llamamos T(n) al número de triangulaciones de un polígono de n vértices, se verifica la siguiente relación de recurrencia:

    T(2) = 1
    T(n) = T(2)*T(n-1) + T(3)*T(n-2) + ... + T(n-1)*T(2)

Definir la función

   numeroTriangulaciones :: Integer -> Integer

tal que (numeroTriangulaciones n) es el número de triangulaciones de un polígono convexo de n vértices. Por ejemplo,

   numeroTriangulaciones 3  == 1
   numeroTriangulaciones 5  == 5
   numeroTriangulaciones 6  == 14
   numeroTriangulaciones 7  == 42
   numeroTriangulaciones 50 == 131327898242169365477991900
   length (show (numeroTriangulaciones   800)) ==  476
   length (show (numeroTriangulaciones  1000)) ==  597
   length (show (numeroTriangulaciones 10000)) == 6014

Soluciones

import Data.Array
 
import Data.Array (Array, (!), array)
import Data.List  (genericIndex)
import qualified Data.Vector as V
 
-- 1ª solución (por recursión)
-- ===========================
 
numeroTriangulaciones :: Integer -> Integer
numeroTriangulaciones 2 = 1
numeroTriangulaciones n = sum (zipWith (*) ts (reverse ts))
  where ts = [numeroTriangulaciones k | k <- [2..n-1]]
 
-- 2ª solución
-- ===========
 
--    λ> map numeroTriangulaciones2 [2..15]
--    [1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900]
numeroTriangulaciones2 :: Integer -> Integer
numeroTriangulaciones2 n = 
  head (sucNumeroTriangulacionesInversas `genericIndex` (n-2))
 
--    λ> mapM_ print (take 10 sucNumeroTriangulacionesInversas)
--    [1]
--    [1,1]
--    [2,1,1]
--    [5,2,1,1]
--    [14,5,2,1,1]
--    [42,14,5,2,1,1]
--    [132,42,14,5,2,1,1]
--    [429,132,42,14,5,2,1,1]
--    [1430,429,132,42,14,5,2,1,1]
--    [4862,1430,429,132,42,14,5,2,1,1]
sucNumeroTriangulacionesInversas :: [[Integer]]        
sucNumeroTriangulacionesInversas = iterate f [1]
  where f ts = sum (zipWith (*) ts (reverse ts)) : ts
 
-- 3ª solución (con programación dinámica)
-- =======================================
 
numeroTriangulaciones3 :: Integer -> Integer
numeroTriangulaciones3 n = vectorTriang n ! n
 
--    λ> vectorTriang 9
--    array (2,9) [(2,1),(3,1),(4,2),(5,5),(6,14),(7,42),(8,132),(9,429)]
vectorTriang :: Integer -> Array Integer Integer
vectorTriang n = v
  where v = array (2,n) [(i, f i) | i <-[2..n]]
        f 2 = 1
        f i = sum [v!j*v!(i-j+1) | j <-[2..i-1]]
 
-- 4ª solución (con los números de Catalan)
-- ========================================
 
-- Al calcular por primeros números de triangulaciones se obtiene
--    λ> map numeroTriangulaciones [2..12]
--    [1,1,2,5,14,42,132,429,1430,4862,16796]
-- Se observa que se corresponden con los números de Catalan
-- http://bit.ly/2FOc1S1
-- 
-- El n-ésimo número de Catalan es
--    (2n)! / (n! * (n+1)!)
-- El número de triangulaciones de un polígono de n lados es el
-- (n-2)-ésimo número de Catalan.
 
numeroTriangulaciones4 :: Integer -> Integer
numeroTriangulaciones4 n = numeroCatalan (n-2) 
 
numeroCatalan :: Integer -> Integer
numeroCatalan n =
  factorial (2*n) `div` (factorial (n+1) * factorial n)
 
factorial :: Integer -> Integer
factorial n = product [1..n]
 
-- 5ª solución
-- ===========
 
numeroTriangulaciones5 :: Integer -> Integer
numeroTriangulaciones5 n = v V.! (m-2)
   where v = V.constructN m
           (\w -> if   V.null w then 1
                  else V.sum (V.zipWith (*) w (V.reverse w)))
         m = fromIntegral n
 
-- 6ª solución
-- ===========
 
numeroTriangulaciones6 :: Integer -> Integer
numeroTriangulaciones6 n = nCr (2*n-4, n-2) `div` (n-1)
  where nCr (n,m)   = factorial n `div` (factorial (n-m) * factorial m)
        factorial n = product [1..n]
 
-- Comparación de eficiencia
-- =========================
 
--    λ> numeroTriangulaciones 22
--    6564120420
--    (3.97 secs, 668,070,936 bytes)
--    λ> numeroTriangulaciones2 22
--    6564120420
--    (0.01 secs, 180,064 bytes)
--    λ> numeroTriangulaciones3 22
--    6564120420
--    (0.01 secs, 285,792 bytes)
--    
--    λ> length (show (numeroTriangulaciones2 800))
--    476
--    (0.59 secs, 125,026,824 bytes)
--    λ> length (show (numeroTriangulaciones3 800))
--    476
--    (1.95 secs, 334,652,936 bytes)
--    λ> length (show (numeroTriangulaciones4 800))
--    476
--    (0.01 secs, 2,960,088 bytes)
--    λ> length (show (numeroTriangulaciones5 800))
--    476
--    (0.65 secs, 200,415,640 bytes)
--    λ> length (show (numeroTriangulaciones6 800))
--    476
--    (0.01 secs, 2,960,224 bytes)
--    
--    λ> length (show (numeroTriangulaciones4 (10^4)))
--    6014
--    (1.80 secs, 542,364,320 bytes)
--    λ> length (show (numeroTriangulaciones6 (10^4)))
--    6014
--    (1.87 secs, 542,351,136 bytes)

Espacio de estados del problema de las N reinas

El problema de las N reinas consiste en colocar N reinas en tablero rectangular de dimensiones N por N de forma que no se encuentren más de una en la misma línea: horizontal, vertical o diagonal. Por ejemplo, una solución para el problema de las 4 reinas es

   |---|---|---|---|
   |   | R |   |   |
   |---|---|---|---|
   |   |   |   | R |
   |---|---|---|---|
   | R |   |   |   |
   |---|---|---|---|
   |   |   | R |   |
   |---|---|---|---|

Los estados del problema de las N reinas son los tableros con las reinas colocadas. Inicialmente el tablero está vacío y, en cda paso se coloca una reina en la primera columna en la que aún no hay ninguna reina.

Cada estado se representa por una lista de números que indican las filas donde se han colocado las reinas. Por ejemplo, el tablero anterior se representa por [2,4,1,3].

Usando la librería de árboles Data.Tree, definir las funciones

   arbolReinas :: Int -> Tree [Int]
   nEstados    :: Int -> Int
   soluciones  :: Int -> [[Int]]
   nSoluciones :: Int -> Int

tales que

  • (arbolReinas n) es el árbol de estados para el problema de las n reinas. Por ejemplo,
     λ> putStrLn (drawTree (fmap show (arbolReinas 4)))
     []
     |
     +- [1]
     |  |
     |  +- [3,1]
     |  |
     |  `- [4,1]
     |     |
     |     `- [2,4,1]
     |
     +- [2]
     |  |
     |  `- [4,2]
     |     |
     |     `- [1,4,2]
     |        |
     |        `- [3,1,4,2]
     |
     +- [3]
     |  |
     |  `- [1,3]
     |     |
     |     `- [4,1,3]
     |        |
     |        `- [2,4,1,3]
     |
     `- [4]
        |
        +- [1,4]
        |  |
        |  `- [3,1,4]
        |
        `- [2,4]
 
     λ> putStrLn (drawTree (fmap show (arbolReinas 5)))
     []
     |
     +- [1]
     |  |
     |  +- [3,1]
     |  |  |
     |  |  `- [5,3,1]
     |  |     |
     |  |     `- [2,5,3,1]
     |  |        |
     |  |        `- [4,2,5,3,1]
     |  |
     |  +- [4,1]
     |  |  |
     |  |  `- [2,4,1]
     |  |     |
     |  |     `- [5,2,4,1]
     |  |        |
     |  |        `- [3,5,2,4,1]
     |  |
     |  `- [5,1]
     |     |
     |     `- [2,5,1]
     |
     +- [2]
     |  |
     |  +- [4,2]
     |  |  |
     |  |  `- [1,4,2]
     |  |     |
     |  |     `- [3,1,4,2]
     |  |        |
     |  |        `- [5,3,1,4,2]
     |  |
     |  `- [5,2]
     |     |
     |     +- [1,5,2]
     |     |  |
     |     |  `- [4,1,5,2]
     |     |
     |     `- [3,5,2]
     |        |
     |        `- [1,3,5,2]
     |           |
     |           `- [4,1,3,5,2]
     |
     +- [3]
     |  |
     |  +- [1,3]
     |  |  |
     |  |  `- [4,1,3]
     |  |     |
     |  |     `- [2,4,1,3]
     |  |        |
     |  |        `- [5,2,4,1,3]
     |  |
     |  `- [5,3]
     |     |
     |     `- [2,5,3]
     |        |
     |        `- [4,2,5,3]
     |           |
     |           `- [1,4,2,5,3]
     |
     +- [4]
     |  |
     |  +- [1,4]
     |  |  |
     |  |  +- [3,1,4]
     |  |  |  |
     |  |  |  `- [5,3,1,4]
     |  |  |     |
     |  |  |     `- [2,5,3,1,4]
     |  |  |
     |  |  `- [5,1,4]
     |  |     |
     |  |     `- [2,5,1,4]
     |  |
     |  `- [2,4]
     |     |
     |     `- [5,2,4]
     |        |
     |        `- [3,5,2,4]
     |           |
     |           `- [1,3,5,2,4]
     |
     `- [5]
        |
        +- [1,5]
        |  |
        |  `- [4,1,5]
        |
        +- [2,5]
        |  |
        |  `- [4,2,5]
        |     |
        |     `- [1,4,2,5]
        |        |
        |        `- [3,1,4,2,5]
        |
        `- [3,5]
           |
           `- [1,3,5]
              |
              `- [4,1,3,5]
                 |
                 `- [2,4,1,3,5]
  • (nEstados n) es el número de estados en el problema de las n reinas. Por ejemplo,
     nEstados 4            ==  17
     nEstados 5            ==  54
     map nEstados [0..10]  ==  [1,2,3,6,17,54,153,552,2057,8394,35539]
  • (soluciones n) es la lista de estados que son soluciones del problema de las n reinas. Por ejemplo,
     λ> soluciones 4
     [[3,1,4,2],[2,4,1,3]]
     λ> soluciones 5
     [[4,2,5,3,1],[3,5,2,4,1],[5,3,1,4,2],[4,1,3,5,2],[5,2,4,1,3],
      [1,4,2,5,3],[2,5,3,1,4],[1,3,5,2,4],[3,1,4,2,5],[2,4,1,3,5]]
  • (nSoluciones n) es el número de soluciones del problema de las n reinas. Por ejemplo,
     nSoluciones 4            ==  2
     nSoluciones 5            ==  10
     map nSoluciones [0..10]  ==  [1,1,0,0,2,10,4,40,92,352,724]

Soluciones

import Data.List ((\\))
import Data.Tree
 
-- Definición de arbolReinas
-- =========================
 
arbolReinas :: Int -> Tree [Int]
arbolReinas n = expansion n []
  where
    expansion m xs = Node xs [expansion (m-1) ys | ys <- sucesores n xs]
 
-- (sucesores n xs) es la lista de los sucesores del estado xs en el
-- problema de las n reinas. Por ejemplo,
--    sucesores 4 []       ==  [[1],[2],[3],[4]]
--    sucesores 4 [1]      ==  [[3,1],[4,1]]
--    sucesores 4 [4,1]    ==  [[2,4,1]]
--    sucesores 4 [2,4,1]  ==  []
sucesores :: Int -> [Int] -> [[Int]]
sucesores n xs = [y:xs | y <- [1..n] \\ xs
                       , noAtaca y xs 1]
 
-- (noAtaca y xs d) se verifica si la reina en la fila y no ataca a las
-- colocadas en las filas xs donde d es el número de columnas desde la
-- de la posición de x a la primera de xs.
noAtaca :: Int -> [Int] -> Int -> Bool
noAtaca _ [] _ = True
noAtaca y (x:xs) distH = abs(y-x) /= distH &&
                         noAtaca y xs (distH + 1)               
 
-- Definición de nEstados
-- ======================
 
nEstados :: Int -> Int
nEstados = length . arbolReinas
 
-- Definición de solucionesReinas
-- ==============================
 
--    λ> soluciones 4
--    [[3,1,4,2],[2,4,1,3]]
--    λ> soluciones 5
--    [[4,2,5,3,1],[3,5,2,4,1],[5,3,1,4,2],[4,1,3,5,2],[5,2,4,1,3],
--     [1,4,2,5,3],[2,5,3,1,4],[1,3,5,2,4],[3,1,4,2,5],[2,4,1,3,5]]
soluciones :: Int -> [[Int]]
soluciones n =
  filter (\xs -> length xs == n) (estados n)
 
-- (estados n) es la lista de estados del problema de las n reinas. Por
-- ejemplo, 
--   λ> estados 4
--   [[],
--    [1],[2],[3],[4],
--    [3,1],[4,1],[4,2],[1,3],[1,4],[2,4],
--    [2,4,1],[1,4,2],[4,1,3],[3,1,4],
--    [3,1,4,2],[2,4,1,3]]
estados :: Int -> [[Int]]
estados = concat . levels . arbolReinas
 
-- Definición de nSoluciones
-- =========================
 
nSoluciones :: Int -> Int
nSoluciones = length . soluciones

El problema de las N torres

El problema de las N torres consiste en colocar N torres en un tablero con N filas y N columnas de forma que no haya dos torres en la misma fila ni en la misma columna.

Cada solución del problema de puede representar mediante una matriz con ceros y unos donde los unos representan las posiciones ocupadas por las torres y los ceros las posiciones libres. Por ejemplo,

   ( 0 1 0 )
   ( 1 0 0 )
   ( 0 0 1 )

representa una solución del problema de las 3 torres.

Definir las funciones

   torres  :: Int -> [Matrix Int]
   nTorres :: Int -> Integer

tales que

  • (torres n) es la lista de las soluciones del problema de las n torres. Por ejemplo,
      λ> torres 3
      [( 1 0 0 )
       ( 0 1 0 )
       ( 0 0 1 )
      ,( 1 0 0 )
       ( 0 0 1 )
       ( 0 1 0 )
      ,( 0 1 0 )
       ( 1 0 0 )
       ( 0 0 1 )
      ,( 0 1 0 )
       ( 0 0 1 )
       ( 1 0 0 )
      ,( 0 0 1 )
       ( 1 0 0 )
       ( 0 1 0 )
      ,( 0 0 1 )
       ( 0 1 0 )
       ( 1 0 0 )
      ]

donde se ha indicado con 1 las posiciones ocupadas por las torres.

  • (nTorres n) es el número de soluciones del problema de las n torres. Por ejemplo,
      λ> nTorres 3
      6
      λ> length (show (nTorres (10^4)))
      35660

Soluciones

import Data.List (genericLength, sort, permutations)
import Data.Matrix 
 
-- 1ª definición de torres
-- =======================
 
torres1 :: Int -> [Matrix Int]
torres1 n = 
    [permutacionAmatriz n p | p <- sort (permutations [1..n])]
 
permutacionAmatriz :: Int -> [Int] -> Matrix Int
permutacionAmatriz n p =
    matrix n n f
    where f (i,j) | (i,j) `elem` posiciones = 1
                  | otherwise               = 0
          posiciones = zip [1..n] p    
 
-- 2ª definición de torres
-- =======================
 
torres2 :: Int -> [Matrix Int]
torres2 = map fromLists . permutations . toLists . identity
 
-- El cálculo con la definición anterior es:
--    λ> identity 3
--    ( 1 0 0 )
--    ( 0 1 0 )
--    ( 0 0 1 )
--    
--    λ> toLists it
--    [[1,0,0],[0,1,0],[0,0,1]]
--    λ> permutations it
--    [[[1,0,0],[0,1,0],[0,0,1]],
--     [[0,1,0],[1,0,0],[0,0,1]],
--     [[0,0,1],[0,1,0],[1,0,0]],
--     [[0,1,0],[0,0,1],[1,0,0]],
--     [[0,0,1],[1,0,0],[0,1,0]],
--     [[1,0,0],[0,0,1],[0,1,0]]]
--    λ> map fromLists it
--    [( 1 0 0 )
--     ( 0 1 0 )
--     ( 0 0 1 )
--    ,( 0 1 0 )
--     ( 1 0 0 )
--     ( 0 0 1 )
--    ,( 0 0 1 )
--     ( 0 1 0 )
--     ( 1 0 0 )
--    ,( 0 1 0 )
--     ( 0 0 1 )
--     ( 1 0 0 )
--    ,( 0 0 1 )
--     ( 1 0 0 )
--     ( 0 1 0 )
--    ,( 1 0 0 )
--     ( 0 0 1 )
--     ( 0 1 0 )
--    ]
 
-- 1ª definición de nTorres
-- ========================
 
nTorres1 :: Int -> Integer
nTorres1 = genericLength . torres1
 
-- 2ª definición de nTorres
-- ========================
 
nTorres2 :: Int -> Integer
nTorres2 n = product [1..fromIntegral n]
 
-- Comparación de eficiencia
-- =========================
 
--    λ> nTorres1 9
--    362880
--    (4.22 secs, 693,596,128 bytes)
--    λ> nTorres2 9
--    362880
--    (0.00 secs, 0 bytes)

Reconocimiento de camino en un grafo

Dado un grafo no dirigido G, un camino en G es una secuencia de nodos [v(1),v(2),v(3),…,v(n)] tal que para todo i entre 1 y n-1, (v(i),v(i+1)) es una arista de G. Por ejemplo, dados los grafos

   g1, g2 :: Grafo Int Int
   g1 = creaGrafo ND (1,3) [(1,2,0),(1,3,0),(2,3,0)]
   g2 = creaGrafo ND (1,4) [(1,2,0),(1,3,0),(1,4,0),(2,4,0),(3,4,0)]

la lista [1,2,3] es un camino en g1, pero no es un camino en g2 puesto que la arista (2,3) no existe en g2.

Definir la función

   camino :: Grafo Int Int -> [Int] -> Bool

tal que (camino g vs) se verifica si la lista de nodos vs es un camino en el grafo g. Por ejemplo,

   camino g1 [1,2,3]  ==  True
   camino g2 [1,2,3]  ==  False

Nota: Este ejercicio debe realizarse usando únicamente las funciones de la librería de grafos (I1M.Grafo) que se describe aquí y se encuentra aquí.

Soluciones

import I1M.Grafo 
 
g1, g2 :: Grafo Int Int
g1 = creaGrafo ND (1,3) [(1,2,0),(1,3,0),(2,3,0)]
g2 = creaGrafo ND (1,4) [(1,2,0),(1,3,0),(1,4,0),(2,4,0),(3,4,0)]
 
camino :: Grafo Int Int -> [Int] -> Bool
camino g vs = all (aristaEn g) (zip vs (tail vs))

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

   sucLoomis           :: Integer -> [Integer]
   convergencia        :: Integer -> Integer
   graficaConvergencia :: [Integer] -> IO ()

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,
     λ> take 15 (sucLoomis 1)
     [1,2,4,8,16,22,26,38,62,74,102,104,108,116,122]
     λ> take 15 (sucLoomis 2)
     [2,4,8,16,22,26,38,62,74,102,104,108,116,122,126]
     λ> take 15 (sucLoomis 3)
     [3,6,12,14,18,26,38,62,74,102,104,108,116,122,126]
     λ> take 15 (sucLoomis 4)
     [4,8,16,22,26,38,62,74,102,104,108,116,122,126,138]
     λ> take 15 (sucLoomis 5)
     [5,10,11,12,14,18,26,38,62,74,102,104,108,116,122]
     λ> take 15 (sucLoomis 20)
     [20,22,26,38,62,74,102,104,108,116,122,126,138,162,174]
     λ> take 15 (sucLoomis 100)
     [100,101,102,104,108,116,122,126,138,162,174,202,206,218,234]
     λ> sucLoomis 1 !! (2*10^5)
     235180736652
  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,
     convergencia  2      ==  2
     convergencia  3      ==  26
     convergencia  4      ==  4
     convergencia 17      ==  38
     convergencia 19      ==  102
     convergencia 43      ==  162
     convergencia 27      ==  202
     convergencia 58      ==  474
     convergencia 63      ==  150056
     convergencia 81      ==  150056
     convergencia 89      ==  150056
     convergencia (10^12) ==  1000101125092
  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

import Data.List               ((\\))
import Data.Char               (digitToInt)
import Graphics.Gnuplot.Simple (plotList, Attribute (Key, Title, XRange, PNG))
 
-- 1ª definición de sucLoomis
-- ==========================
 
sucLoomis :: Integer -> [Integer]
sucLoomis x = map (loomis x) [0..]
 
loomis :: Integer -> Integer -> Integer
loomis x 0 = x
loomis x n = y + productoDigitosNoNulos y
  where y = loomis x (n-1)
 
productoDigitosNoNulos :: Integer -> Integer
productoDigitosNoNulos = product . digitosNoNulos
 
digitosNoNulos :: Integer -> [Integer]
digitosNoNulos x =
  [read [c] | c <- show x, c /= '0']
 
-- 2ª definición de sucLoomis
-- ==========================
 
sucLoomis2 :: Integer -> [Integer]
sucLoomis2 = iterate siguienteLoomis 
 
siguienteLoomis :: Integer -> Integer
siguienteLoomis y = y + productoDigitosNoNulos y
 
-- 3ª definición de sucLoomis
-- ==========================
 
sucLoomis3 :: Integer -> [Integer]
sucLoomis3 =
  iterate ((+) <*> product .
           map (toInteger . digitToInt) .
           filter (/= '0') . show)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> sucLoomis 1 !! 30000
--    6571272766
--    (2.45 secs, 987,955,944 bytes)
--    λ> sucLoomis2 1 !! 30000
--    6571272766
--    (2.26 secs, 979,543,328 bytes)
--    λ> sucLoomis3 1 !! 30000
--    6571272766
--    (0.31 secs, 88,323,832 bytes)
 
-- 1ª definición de convergencia
-- =============================
 
convergencia1 :: Integer -> Integer
convergencia1 x =
  head (dropWhile noEnSucLoomisDe1 (sucLoomis x))
 
noEnSucLoomisDe1 :: Integer -> Bool
noEnSucLoomisDe1 x = not (pertenece x sucLoomisDe1)
 
sucLoomisDe1 :: [Integer]
sucLoomisDe1 = sucLoomis 1
 
pertenece :: Integer -> [Integer] -> Bool
pertenece x ys =
  x == head (dropWhile (<x) ys)
 
-- 2ª definición de convergencia
-- =============================
 
convergencia2 :: Integer -> Integer
convergencia2 = aux (sucLoomis3 1) . sucLoomis3
 where aux as@(x:xs) bs@(y:ys) | x == y    = x
                               | x < y     = aux xs bs
                               | otherwise = aux as ys
 
-- 3ª definición de convergencia
-- =============================
 
convergencia3 :: Integer -> Integer
convergencia3 = head . interseccion (sucLoomis3 1) . sucLoomis3
 
-- (interseccion xs ys) es la intersección entre las listas ordenadas xs
-- e ys. Por ejemplo,
--    λ> take 10 (interseccion (sucLoomis3 1) (sucLoomis3 2))
--    [2,4,8,16,22,26,38,62,74,102]
interseccion :: Ord a => [a] -> [a] -> [a]
interseccion = aux
  where aux as@(x:xs) bs@(y:ys) = case compare x y of
                                    LT ->     aux xs bs
                                    EQ -> x : aux xs ys
                                    GT ->     aux as ys
        aux _         _         = []                           
 
-- 4ª definición de convergencia
-- =============================
 
convergencia4 :: Integer -> Integer
convergencia4 x = perteneceA (sucLoomis3 x) 1
  where perteneceA (y:ys) n | y == c    = y
                            | otherwise = perteneceA ys c
          where c = head $ dropWhile (< y) $ sucLoomis3 n
 
-- Comparación de eficiencia
-- =========================
 
--    λ> convergencia1 (10^4)
--    150056
--    (2.94 secs, 1,260,809,808 bytes)
--    λ> convergencia2 (10^4)
--    150056
--    (0.03 secs, 700,240 bytes)
--    λ> convergencia3 (10^4)
--    150056
--    (0.03 secs, 1,165,496 bytes)
--    λ> convergencia4 (10^4)
--    150056
--    (0.02 secs, 1,119,648 bytes)
--    
--    λ> convergencia2 (10^12)
--    1000101125092
--    (1.81 secs, 714,901,080 bytes)
--    λ> convergencia3 (10^12)
--    1000101125092
--    (1.92 secs, 744,932,184 bytes)
--    λ> convergencia4 (10^12)
--    1000101125092
--    (1.82 secs, 941,053,328 bytes)
 
-- Definición de graficaConvergencia
-- ==================================
 
graficaConvergencia :: [Integer] -> IO ()
graficaConvergencia xs =
  plotList [ Key Nothing
           , Title "Convergencia de sucesiones de Loomis"
           , XRange (fromIntegral (minimum xs),fromIntegral (maximum xs))
           , PNG "Las_sucesiones_de_Loomis_2.png"
           ]
           [(x,convergencia2 x) | x <- xs]

Pensamiento

Era una noche del mes
de mayo, azul y serena.
Sobre el agudo ciprés
brillaba la luna llena.

Antonio Machado