El sesgo de Chebyshev

Un número primo distinto de 2 tiene la forma 4k + 1 o 4k + 3. Chebyshev notó en 1853 que la mayoría de las veces hay más números primos de la forma 4k + 3 que números primos de la forma 4k + 1 menores que un número dado. Esto se llama el sesgo de Chebyshev.

Definir las funciones

tales que

  • distribucionPrimosModulo4 es la lista de las ternas (p,a,b) tales que p es un números primo, a es la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 y b es la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo,

  • empatesRestosModulo4 es la lista de los primos p tales que la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 es igual a la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo,

  • mayoria1RestosModulo4 es la lista de los primos p tales que la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 es mayor que la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo,

  • (graficaChebyshev n) dibuja la gráfica de los puntos (p,b-a) donde p es uno de los n primeros primos impares, a es la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 y b es la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo, (graficaChebyshev 5000) dibuja la figura

Soluciones

[schedule expon=’2020-03-30′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El valor de un problema no es tanto el de encontrar la respuesta como el de las ideas e intentos que obliga su resolución.»

Israel Nathan Herstein.

[/schedule]

[schedule on=’2020-03-30′ at=»06:00″]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Primos magnánimos

Un número magnánimo es un número tal que las sumas obtenidas insertando un «+» entre sus dígitos en cualquier posición son números primos. Por ejemplo, 4001 es un número magnánimo porque los números 4+001=5, 40+01=41 y 400+1=401 son primos.

Definir las funciones

tales que

  • (esMagnanimo n) se verifica si n es un número magnánimo. Por ejemplo,

  • primosMagnanimos es la lista de los números primos magnánimos. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Existe una distinción entre lo que se puede llamar un problema y lo que puede considerar un ejercicio. Este último sirve para entrenar al en alguna técnica o procedimiento, y requiere poco o ningún original. A diferencia de un ejercicio, un problema, si es apropiado para nivel, debe requerir pensamiento por parte del estudiante. Es imposible exagerar la importancia de los problemas en las matemáticas. Es por medio de los problemas que las matemáticas se desarrollan y se levantan por sí mismas. Cada nuevo descubrimiento en matemáticas es el resultado de un intento de resolver algún problema.»

Howard Eves.

Diagonales invertidas

Definir la función

tal que (diagonalesInvertidas q) es la matriz obtenida invirtiendo el orden de los elementos de la diagonal principal y de la diagonal secundaria de q. Por ejemplo,

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Soluciones

Pensamiento

«No estamos muy contentos cuando nos vemos obligados a aceptar una verdad matemática en virtud de una complicada cadena de conclusiones formales y cálculos, que atravesamos a ciegas, eslabón por eslabón, sintiendo nuestro camino por el tacto. Queremos primero una visión general del objetivo y del camino; queremos entender la idea de la prueba, el contexto más profundo.»

Hermann Weyl.

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Mi trabajo siempre trató de unir lo verdadero con lo bello; pero cuando tuve que elegir uno u otro, generalmente elegí lo bello.»

Hermann Weyl.

Repeticiones consecutivas

Se dice que una palabra tiene una repetición en una frase si es igual a una, o más, de las palabras consecutivas sin distinguir mayúsculas de minúsculas.

Definir la función

tal que (nRepeticionesConsecutivas cs) es el número de repeticiones de palabras consecutivas de la cadena cs. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«En el campo de la computación, el momento de la verdad es la ejecución de un programa; todo lo demás es profecía.»

Herbert A. Simon.