Menu Close

Etiqueta: L.congr_arg2

Las sucesiones convergentes son sucesiones de Cauchy

Nota: El problema de hoy lo ha escrito Sara Díaz Real y es uno de los que se encuentran en su Trabajo Fin de Máster Formalización en Lean de problemas de las Olimpiadas Internacionales de Matemáticas (IMO). Concretamente, el problema se encuentra en la página 52 junto con la demostración en lenguaje natural.


En Lean, una sucesión u₀, u₁, u₂, … se puede representar mediante una función (u : ℕ → ℝ) de forma que u(n) es uₙ.

Se define

  • el valor absoluto de x por
     notation `|`x`|` := abs x
  • a es un límite de la sucesión u, por
     def limite (u : ℕ → ℝ) (a : ℝ) :=
       ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - a| ≤ ε
  • la sucesión u es convergente por
     def suc_convergente (u : ℕ → ℝ) :=
       ∃ l, limite u l
  • la sucesión u es de Cauchy por
     def suc_cauchy (u : ℕ → ℝ) :=
       ∀ ε > 0, ∃ N, ∀ p ≥ N, ∀ q ≥ N, |u p - u q| ≤ ε

Demostrar que las sucesiones convergentes son de Cauchy.

Para ello, completar la siguiente teoría de Lean:

import data.real.basic
 
variable {u :    }
 
notation `|`x`|` := abs x
 
def limite (u :   ) (l : ) : Prop :=
   ε > 0,  N,  n  N, |u n - l|  ε
 
def suc_convergente (u :   ) :=
   l, limite u l
 
def suc_cauchy (u :   ) :=
   ε > 0,  N,  p  N,  q  N, |u p - u q|  ε
 
example
  (h : suc_convergente u)
  : suc_cauchy u :=
sorry
Soluciones con Lean
import data.real.basic
 
variable {u :    }
 
notation `|`x`|` := abs x
 
def limite (u :   ) (l : ) : Prop :=
   ε > 0,  N,  n  N, |u n - l|  ε
 
def suc_convergente (u :   ) :=
   l, limite u l
 
def suc_cauchy (u :   ) :=
   ε > 0,  N,  p  N,  q  N, |u p - u q|  ε
 
-- 1ª demostración
example
  (h : suc_convergente u)
  : suc_cauchy u :=
begin
  unfold suc_cauchy,
  intros ε hε,
  have2 : 0 < ε/2 := half_pos hε,
  cases h with l hl,
  cases hl (ε/2)2 with N hN,
  clear hε hl hε2,
  use N,
  intros p hp q hq,
  calc |u p - u q|
       = |(u p - l) + (l - u q)| : by ring_nf
   ...  |u p - l|  + |l - u q|  : abs_add (u p - l) (l - u q)
   ... = |u p - l|  + |u q - l|  : congr_arg2 (+) rfl (abs_sub_comm l (u q))
   ...  ε/2 + ε/2               : add_le_add (hN p hp) (hN q hq)
   ... = ε                       : add_halves ε,
end
 
-- 2ª demostración
example
  (h : suc_convergente u)
  : suc_cauchy u :=
begin
  intros ε hε,
  cases h with l hl,
  cases hl (ε/2) (half_pos hε) with N hN,
  clear hε hl,
  use N,
  intros p hp q hq,
  calc |u p - u q|
       = |(u p - l) + (l - u q)| : by ring_nf
   ...  |u p - l|  + |l - u q|  : abs_add (u p - l) (l - u q)
   ... = |u p - l|  + |u q - l|  : congr_arg2 (+) rfl (abs_sub_comm l (u q))
   ...  ε/2 + ε/2               : add_le_add (hN p hp) (hN q hq)
   ... = ε                       : add_halves ε,
end
 
-- 3ª demostración
example
  (h : suc_convergente u)
  : suc_cauchy u :=
begin
  intros ε hε,
  cases h with l hl,
  cases hl (ε/2) (half_pos hε) with N hN,
  clear hε hl,
  use N,
  intros p hp q hq,
  have cota1 : |u p - l|  ε / 2 := hN p hp,
  have cota2 : |u q - l|  ε / 2 := hN q hq,
  clear hN hp hq,
  calc |u p - u q|
       = |(u p - l) + (l - u q)| : by ring_nf
   ...  |u p - l|  + |l - u q|  : abs_add (u p - l) (l - u q)
   ... = |u p - l|  + |u q - l|  : by rw abs_sub_comm l (u q)
   ...  ε                       : by linarith,
end
 
-- 4ª demostración
example
  (h : suc_convergente u)
  : suc_cauchy u :=
begin
  intros ε hε,
  cases h with l hl,
  cases hl (ε/2) (half_pos hε) with N hN,
  clear hε hl,
  use N,
  intros p hp q hq,
  calc |u p - u q|
       = |(u p - l) + (l - u q)| : by ring_nf
   ...  |u p - l|  + |l - u q|  : abs_add (u p - l) (l - u q)
   ... = |u p - l|  + |u q - l|  : by rw abs_sub_comm l (u q)
   ...  ε                       : by linarith [hN p hp, hN q hq],
end
 
-- 5ª demostración
example
  (h : suc_convergente u)
  : suc_cauchy u :=
begin
  intros ε hε,
  cases h with l hl,
  cases hl (ε/2) (by linarith) with N hN,
  use N,
  intros p hp q hq,
  calc |u p - u q|
       = |(u p - l) + (l - u q)| : by ring_nf
   ...  |u p - l|  + |l - u q|  : by simp [abs_add]
   ... = |u p - l|  + |u q - l|  : by simp [abs_sub_comm]
   ...  ε                       : by linarith [hN p hp, hN q hq],
end

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>

Soluciones con Isabelle/HOL
theory Las_sucesiones_convergentes_son_sucesiones_de_Cauchy
imports Main HOL.Real
begin
 
definition limite :: "(nat ⇒ real) ⇒ real ⇒ bool"
  where "limite u c ⟷ (∀ε>0. ∃k::nat. ∀n≥k. ¦u n - c¦ < ε)"
 
definition suc_convergente :: "(nat ⇒ real) ⇒ bool"
  where "suc_convergente u ⟷ (∃ l. limite u l)"
 
definition suc_cauchy :: "(nat ⇒ real) ⇒ bool"
  where "suc_cauchy u ⟷ (∀ε>0. ∃k. ∀m≥k. ∀n≥k. ¦u m - u n¦ < ε)"
 
(* 1ª demostración *)
lemma
  assumes "suc_convergente u"
  shows   "suc_cauchy u"
proof (unfold suc_cauchy_def; intro allI impI)
  fix ε :: real
  assume "0 < ε"
  then have "0 < ε/2"
    by simp
  obtain a where "limite u a"
    using assms suc_convergente_def by blast
  then obtain k where hk : "∀n≥k. ¦u n - a¦ < ε/2"
    using0 < ε / 2› limite_def by blast
  have "∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
  proof (intro allI impI)
    fix p q
    assume hp : "p ≥ k" and hq : "q ≥ k"
    then have hp' : "¦u p - a¦ < ε/2"
      using hk by blast
    have hq' : "¦u q - a¦ < ε/2"
      using hk hq by blast
    have "¦u p - u q¦ = ¦(u p - a) + (a - u q)¦"
      by simp
    also have "… ≤ ¦u p - a¦  + ¦a - u q¦"
      by simp
    also have "… = ¦u p - a¦  + ¦u q - a¦"
      by simp
    also have "… < ε/2 + ε/2"
      using hp' hq' by simp
    also have "… = ε"
      by simp
    finally show "¦u p - u q¦ < ε"
      by this
  qed
  then show "∃k. ∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
    by (rule exI)
qed
 
(* 2ª demostración *)
lemma
  assumes "suc_convergente u"
  shows   "suc_cauchy u"
proof (unfold suc_cauchy_def; intro allI impI)
  fix ε :: real
  assume "0 < ε"
  then have "0 < ε/2"
    by simp
  obtain a where "limite u a"
    using assms suc_convergente_def by blast
  then obtain k where hk : "∀n≥k. ¦u n - a¦ < ε/2"
    using0 < ε / 2› limite_def by blast
  have "∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
  proof (intro allI impI)
    fix p q
    assume hp : "p ≥ k" and hq : "q ≥ k"
    then have hp' : "¦u p - a¦ < ε/2"
      using hk by blast
    have hq' : "¦u q - a¦ < ε/2"
      using hk hq by blast
    show "¦u p - u q¦ < ε"
      using hp' hq' by argo
  qed
  then show "∃k. ∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
    by (rule exI)
qed
 
(* 3ª demostración *)
lemma
  assumes "suc_convergente u"
  shows   "suc_cauchy u"
proof (unfold suc_cauchy_def; intro allI impI)
  fix ε :: real
  assume "0 < ε"
  then have "0 < ε/2"
    by simp
  obtain a where "limite u a"
    using assms suc_convergente_def by blast
  then obtain k where hk : "∀n≥k. ¦u n - a¦ < ε/2"
    using0 < ε / 2› limite_def by blast
  have "∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
    using hk by (smt (z3) field_sum_of_halves)
  then show "∃k. ∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
    by (rule exI)
qed
 
(* 3ª demostración *)
lemma
  assumes "suc_convergente u"
  shows   "suc_cauchy u"
proof (unfold suc_cauchy_def; intro allI impI)
  fix ε :: real
  assume "0 < ε"
  then have "0 < ε/2"
    by simp
  obtain a where "limite u a"
    using assms suc_convergente_def by blast
  then obtain k where hk : "∀n≥k. ¦u n - a¦ < ε/2"
    using0 < ε / 2› limite_def by blast
  then show "∃k. ∀m≥k. ∀n≥k. ¦u m - u n¦ < ε"
    by (smt (z3) field_sum_of_halves)
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>

La composición por la izquierda con una inyectiva es una operación inyectiva

Sean f₁ y f₂ funciones de X en Y y g una función de X en Y. Demostrar que si g es inyectiva y g ∘ f₁ = g ∘ f₂, entonces f₁ = f₂.

Para ello, completar la siguiente teoría de Lean:

import tactic
 
variables {X Y Z : Type*}
variables {f₁ f₂ : X  Y}
variable  {g : Y  Z}
 
example
  (hg : function.injective g)
  (hgf : g  f₁ = g  f₂)
  : f₁ = f₂ :=
sorry
Soluciones con Lean
import tactic
 
variables {X Y Z : Type*}
variables {f₁ f₂ : X  Y}
variable  {g : Y  Z}
 
-- 1ª demostración
example
  (hg : function.injective g)
  (hgf : g  f₁ = g  f₂)
  : f₁ = f₂ :=
begin
  funext,
  apply hg,
  calc g (f₁ x)
       = (g  f₁) x : rfl
   ... = (g  f₂) x : congr_fun hgf x
   ... = g (f₂ x)   : rfl,
end
 
-- 2ª demostración
example
  (hg : function.injective g)
  (hgf : g  f₁ = g  f₂)
  : f₁ = f₂ :=
begin
  funext,
  apply hg,
  exact congr_fun hgf x,
end
 
-- 3ª demostración
example
  (hg : function.injective g)
  (hgf : g  f₁ = g  f₂)
  : f₁ = f₂ :=
begin
  refine funext (λ i, hg _),
  exact congr_fun hgf i,
end
 
-- 4ª demostración
example
  (hg : function.injective g)
  : function.injective (() g : (X  Y)  (X  Z)) :=
λ f₁ f₂ hgf, funext (λ i, hg (congr_fun hgf i : _))
 
-- 5ª demostración
example
  [hY : nonempty Y]
  (hg : injective g)
  (hgf : g  f₁ = g  f₂)
  : f₁ = f₂ :=
calc f₁ = id  f₁              : (left_id f₁).symm
    ... = (inv_fun g  g)  f₁ : congr_arg2 () (inv_fun_comp hg).symm rfl
    ... = inv_fun g  (g  f₁) : comp.assoc _ _ _
    ... = inv_fun g  (g  f₂) : congr_arg2 () rfl hgf
    ... = (inv_fun g  g)  f₂ : comp.assoc _ _ _
    ... = id  f₂              : congr_arg2 () (inv_fun_comp hg) rfl
    ... = f₂                   : left_id f₂
 
-- 6ª demostración
example
  [hY : nonempty Y]
  (hg : injective g)
  (hgf : g  f₁ = g  f₂)
  : f₁ = f₂ :=
calc f₁ = id  f₁              : by finish
    ... = (inv_fun g  g)  f₁ : by finish [inv_fun_comp]
    ... = inv_fun g  (g  f₁) : by refl
    ... = inv_fun g  (g  f₂) : by finish [hgf]
    ... = (inv_fun g  g)  f₂ : by refl
    ... = id  f₂              : by finish [inv_fun_comp]
    ... = f₂                   : by finish

Se puede interactuar con la prueba anterior en esta sesión con Lean.

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="lean"> y otra con </pre>

Soluciones con Isabelle/HOL
theory La_composicion_por_la_izquierda_con_una_inyectiva_es_inyectiva
imports Main
begin
 
(* 1ª demostración *)
lemma
  assumes "inj g"
          "g ∘ f1 = g ∘ f2"
  shows   "f1 = f2"
proof (rule ext)
  fix x
  have "(g ∘ f1) x = (g ∘ f2) x"
    using ‹g ∘ f1 = g ∘ f2› by (rule fun_cong)
  then have "g (f1 x) = g (f2 x)"
    by (simp only: o_apply)
  then show "f1 x = f2 x"
    using ‹inj g› by (simp only: injD)
qed
 
(* 2ª demostración *)
lemma
  assumes "inj g"
          "g ∘ f1 = g ∘ f2"
  shows   "f1 = f2"
proof
  fix x
  have "(g ∘ f1) x = (g ∘ f2) x"
    using ‹g ∘ f1 = g ∘ f2› by simp
  then have "g (f1 x) = g (f2 x)"
    by simp
  then show "f1 x = f2 x"
    using ‹inj g› by (simp only: injD)
qed
 
(* 3ª demostración *)
lemma
  assumes "inj g"
          "g ∘ f1 = g ∘ f2"
  shows   "f1 = f2"
using assms
by (metis fun.inj_map_strong inj_eq)
 
(* 4ª demostración *)
lemma
  assumes "inj g"
          "g ∘ f1 = g ∘ f2"
  shows   "f1 = f2"
proof -
  have "f1 = id ∘ f1"
    by (rule id_o [symmetric])
  also have "… = (inv g ∘ g) ∘ f1"
    by (simp add: assms(1))
  also have "… = inv g ∘ (g ∘ f1)"
    by (simp add: comp_assoc)
  also have "… = inv g ∘ (g ∘ f2)"
    using assms(2) by (rule arg_cong)
  also have "… = (inv g ∘ g) ∘ f2"
    by (simp add: comp_assoc)
  also have "… = id ∘ f2"
    by (simp add: assms(1))
  also have "… = f2"
    by (rule id_o)
  finally show "f1 = f2"
    by this
qed
 
(* 5ª demostración *)
lemma
  assumes "inj g"
          "g ∘ f1 = g ∘ f2"
  shows   "f1 = f2"
proof -
  have "f1 = (inv g ∘ g) ∘ f1"
    by (simp add: assms(1))
  also have "… = (inv g ∘ g) ∘ f2"
    using assms(2) by (simp add: comp_assoc)
  also have "… = f2"
    using assms(1) by simp
  finally show "f1 = f2" .
qed
 
end

En los comentarios se pueden escribir otras soluciones, escribiendo el código entre una línea con <pre lang="isar"> y otra con </pre>