Acciones

Tema 3

De Seminario de Lógica Computacional (2018)

Revisión del 07:42 21 mar 2018 de Jalonso (discusión | contribuciones) (Página creada con '<source lang="ocaml"> (* Datos estructurados en Coq *) Require Export Induction. Module NatList. (* ===================================================================== ...')
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)
(* Datos estructurados en Coq *)

Require Export Induction.

Module NatList. 

(* =====================================================================
   § Pares de númenros 
   ================================================================== *)

(* ---------------------------------------------------------------------
   Ejemplo. El tipo de los números naturales es natprod y su
   constructor es pair.
   ------------------------------------------------------------------ *)

Inductive natprod : Type :=
  pair : nat -> nat -> natprod.

Check (pair 3 5).

(* ---------------------------------------------------------------------
   Ejemplo. Definir la función
      fst : natprod -> nat
   tal que (fst p) es la primera componente de p.
   ------------------------------------------------------------------ *)

Definition fst (p : natprod) : nat := 
  match p with
  | pair x y => x
  end.

(* ---------------------------------------------------------------------
   Ejemplo. Evaluar la expresión 
      fst (pair 3 5)
   ------------------------------------------------------------------ *)

Eval compute in (fst (pair 3 5)).
(* ===> 3 *)

(* ---------------------------------------------------------------------
   Ejemplo. Definir la función
      snd : natprod -> nat
   tal que (snd p) es la segunda componente de p.
   ------------------------------------------------------------------ *)

Definition snd (p : natprod) : nat := 
  match p with
  | pair x y => y
  end.

(* ---------------------------------------------------------------------
   Ejemplo. Definir la notación (x,y) como una abreviaura de (pair x y).
   ------------------------------------------------------------------ *)

Notation "( x , y )" := (pair x y).

(* ---------------------------------------------------------------------
   Ejemplo. Evaluar la expresión 
      fst (3,5)
   ------------------------------------------------------------------ *)

Eval compute in (fst (3,5)).
(* ===> 3 *)

(* ---------------------------------------------------------------------
   Ejemplo. Redefinir la función fst usando la abreviatura de pares.
   ------------------------------------------------------------------ *)

Definition fst' (p : natprod) : nat := 
  match p with
  | (x,y) => x
  end.

(* ---------------------------------------------------------------------
   Ejemplo. Redefinir la función snd usando la abreviatura de pares.
   ------------------------------------------------------------------ *)

Definition snd' (p : natprod) : nat := 
  match p with
  | (x,y) => y
  end.

(* ---------------------------------------------------------------------
   Ejemplo. Definir la función
      swap_pair : natprod -> natprod
   tal que (swap_pair p) es el par obtenido intercambiando las
   componentes de p.
   ------------------------------------------------------------------ *)

Definition swap_pair (p : natprod) : natprod := 
  match p with
  | (x,y) => (y,x)
  end.

(* ---------------------------------------------------------------------
   Ejemplo. Demostrar que para todos los naturales
      (n,m) = (fst (n,m), snd (n,m)).
   ------------------------------------------------------------------ *)

Theorem surjective_pairing' : forall (n m : nat),
  (n,m) = (fst (n,m), snd (n,m)).
Proof.
  reflexivity.
Qed.

(* ---------------------------------------------------------------------
   Ejemplo. Demostrar que para todo par de naturales
      p = (fst p, snd p).
   ------------------------------------------------------------------ *)

Theorem surjective_pairing_stuck : forall (p : natprod),
  p = (fst p, snd p).
Proof.
  simpl. (* No reduce nada. *)
Abort.

Theorem surjective_pairing : forall (p : natprod),
  p = (fst p, snd p).
Proof.
  intros p.  destruct p as [n m].  simpl.  reflexivity.
Qed.

(* ---------------------------------------------------------------------
   Ejercicio 1. Demostrar que para todo par de naturales p,
      (snd p, fst p) = swap_pair p.
   ------------------------------------------------------------------ *)

Theorem snd_fst_is_swap : forall (p : natprod),
  (snd p, fst p) = swap_pair p.
Admitted.

(* ---------------------------------------------------------------------
   Ejercicio 2. Demostrar que para todo par de naturales p,
      fst (swap_pair p) = snd p.
   ------------------------------------------------------------------ *)

Theorem fst_swap_is_snd : forall (p : natprod),
  fst (swap_pair p) = snd p.
Admitted.

(* =====================================================================
   § Listas de números 
   ================================================================== *)

(* ---------------------------------------------------------------------
   Ejemplo. natlist es la lista de los números naturales y sus
   constructores son 
   + nil (la lista vacía) y 
   + cons (tal que (cons x ys) es la lista obtenida añadiéndole x a ys. 
   ------------------------------------------------------------------ *)

Inductive natlist : Type :=
  | nil  : natlist
  | cons : nat -> natlist -> natlist.

(* ---------------------------------------------------------------------
   Ejemplo. Definir la constante 
      mylist : natlist
   que es la lista cuyos elementos son 1, 2 y 3.
   ------------------------------------------------------------------ *)

Definition mylist := cons 1 (cons 2 (cons 3 nil)).

(* ---------------------------------------------------------------------
   Ejemplo. Definir la notación (x :: ys) como una abreviatura de 
   (cons x ys).
   ------------------------------------------------------------------ *)

Notation "x :: l" := (cons x l)
                     (at level 60, right associativity).

(* ---------------------------------------------------------------------
   Ejemplo. Definir la notación de las listas finitas escribiendo sus
   elementos entre corchetes y separados por puntos y comas.
   ------------------------------------------------------------------ *)

Notation "[ ]" := nil.
Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..).

(* ---------------------------------------------------------------------
   Ejemplo. Distintas representaciones de mylist.
   ------------------------------------------------------------------ *)

Definition mylist1 := 1 :: (2 :: (3 :: nil)).
Definition mylist2 := 1 :: 2 :: 3 :: nil.
Definition mylist3 := [1;2;3].

(* =====================================================================
   §§ Repeat  
   ================================================================== *)

(* ---------------------------------------------------------------------
   Ejemplo. Definir la función
      repeat : nat -> nat -> natlist
   tal que (repeat n k) es la lista formada por k veces el número n.
   ------------------------------------------------------------------ *)

Fixpoint repeat (n count : nat) : natlist :=
  match count with
  | O        => nil
  | S count' => n :: (repeat n count')
  end.

(* =====================================================================
   §§ Length  
   ================================================================== *)

(* ---------------------------------------------------------------------
   Ejemplo. Definir la función
      length : natlist -> nat
   tal que (length xs) es el número de elementos de xs.
   ------------------------------------------------------------------ *)

Fixpoint length (l:natlist) : nat :=
  match l with
  | nil    => O
  | h :: t => S (length t)
  end.

(* =====================================================================
   §§ Append  
   ================================================================== *)

(* ---------------------------------------------------------------------
   Ejemplo. Definir la función
      append : natlist -> natlist -> natlist
   tal que (append xs ys) es la concatenación de xs e ys.
   ------------------------------------------------------------------ *)
Fixpoint app (l1 l2 : natlist) : natlist :=
  match l1 with
  | nil    => l2
  | h :: t => h :: (app t l2)
  end.

(* ---------------------------------------------------------------------
   Ejemplo. Definir la notación (xs ++ ys) como una abreviaura de 
   (append xs ys).
   ------------------------------------------------------------------ *)

Notation "x ++ y" := (app x y)
                     (right associativity, at level 60).

(* ---------------------------------------------------------------------
   Ejemplo. Demostrar que
      [1;2;3] ++ [4;5] = [1;2;3;4;5].
      nil     ++ [4;5] = [4;5].
      [1;2;3] ++ nil   = [1;2;3].
   ------------------------------------------------------------------ *)

Example test_app1: [1;2;3] ++ [4;5] = [1;2;3;4;5].
Proof. reflexivity.  Qed.
Example test_app2: nil ++ [4;5] = [4;5].
Proof. reflexivity.  Qed.
Example test_app3: [1;2;3] ++ nil = [1;2;3].
Proof. reflexivity.  Qed.

(* =====================================================================
   §§ Head y tail  
   ================================================================== *)

(* ---------------------------------------------------------------------
   Ejemplo. Definir la función
      hd : nat -> natlist -> natlist
   tal que (hd d xs) es el primer elemento de xs o d, si xs es la lista
   vacía. 
   ------------------------------------------------------------------ *)

Definition hd (default:nat) (l:natlist) : nat :=
  match l with
  | nil    => default
  | h :: t => h
  end.

(* ---------------------------------------------------------------------
   Ejemplo. Definir la función
      tl : natlist -> natlist
   tal que (tl xs) es el resto de xs.
   ------------------------------------------------------------------ *)

Definition tl (l:natlist) : natlist :=
  match l with
  | nil    => nil
  | h :: t => t
  end.

(* ---------------------------------------------------------------------
   Ejemplo. Demostrar que 
       hd 0 [1;2;3] = 1.
       hd 0 []      = 0.
       tl [1;2;3]   = [2;3].
   ------------------------------------------------------------------ *)

Example test_hd1: hd 0 [1;2;3] = 1.
Proof. reflexivity.  Qed.
Example test_hd2: hd 0 [] = 0.
Proof. reflexivity.  Qed.
Example test_tl: tl [1;2;3] = [2;3].
Proof. reflexivity.  Qed.

(* ---------------------------------------------------------------------
   Ejercicio 3. Definir la función
      nonzeros : natlist -> natlist
   tal que (nonzeros xs) es la lista de los elementos de xs distintos de
   cero. Por ejemplo,
      nonzeros [0;1;0;2;3;0;0] = [1;2;3].
   ------------------------------------------------------------------ *)

Fixpoint nonzeros (l:natlist) : natlist
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_nonzeros:
  nonzeros [0;1;0;2;3;0;0] = [1;2;3].
  (* FILL IN HERE *) Admitted.

(* ---------------------------------------------------------------------
   Ejercicio 4. Definir la función
      oddmembers : natlist -> natlist
   tal que (oddmembers xs) es la lista de los elementos impares de
   xs. Por ejemplo,
      oddmembers [0;1;0;2;3;0;0] = [1;3].
   ------------------------------------------------------------------ *)

Fixpoint oddmembers (l:natlist) : natlist
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_oddmembers:
  oddmembers [0;1;0;2;3;0;0] = [1;3].
  (* FILL IN HERE *) Admitted.

(* ---------------------------------------------------------------------
   Ejercicio 5. Definir la función
      countoddmembers : natlist -> nat
   tal que (countoddmembers xs) es el número de elementos impares de
   xs. Por ejemplo,
      countoddmembers [1;0;3;1;4;5] = 4.
      countoddmembers [0;2;4]       = 0.
      countoddmembers nil           = 0.
   ------------------------------------------------------------------ *)

Definition countoddmembers (l:natlist) : nat
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_countoddmembers1:
  countoddmembers [1;0;3;1;4;5] = 4.
  (* FILL IN HERE *) Admitted.

Example test_countoddmembers2:
  countoddmembers [0;2;4] = 0.
  (* FILL IN HERE *) Admitted.

Example test_countoddmembers3:
  countoddmembers nil = 0.
  (* FILL IN HERE *) Admitted.

(* ---------------------------------------------------------------------
   Ejercicio 6. Definir la función
      alternate : natlist -> natlist -> natlist
   tal que (alternate xs ys) es la lista obtenida intercalando los
   elementos de xs e ys. Por ejemplo,
      alternate [1;2;3] [4;5;6] = [1;4;2;5;3;6].
      alternate [1] [4;5;6]     = [1;4;5;6].
      alternate [1;2;3] [4]     = [1;4;2;3].
      alternate [] [20;30]      = [20;30].
   ------------------------------------------------------------------ *)

Fixpoint alternate (l1 l2 : natlist) : natlist
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_alternate1:
  alternate [1;2;3] [4;5;6] = [1;4;2;5;3;6].
  (* FILL IN HERE *) Admitted.

Example test_alternate2:
  alternate [1] [4;5;6] = [1;4;5;6].
  (* FILL IN HERE *) Admitted.

Example test_alternate3:
  alternate [1;2;3] [4] = [1;4;2;3].
  (* FILL IN HERE *) Admitted.

Example test_alternate4:
  alternate [] [20;30] = [20;30].
  (* FILL IN HERE *) Admitted.
(** [] *)

(* ----------------------------------------------------------------- *)
(** *** Bags via Lists *)

(** A [bag] (or [multiset]) is like a set, except that each element
    can appear multiple times rather than just once.  One possible
    implementation is to represent a bag of numbers as a list. *)

Definition bag := natlist.

(** **** Exercise: 3 stars, recommended (bag_functions)  *)
(** Complete the following definitions for the functions
    [count], [sum], [add], and [member] for bags. *)

Fixpoint count (v:nat) (s:bag) : nat
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

(** All these proofs can be done just by [reflexivity]. *)

Example test_count1:              count 1 [1;2;3;1;4;1] = 3.
 (* FILL IN HERE *) Admitted.
Example test_count2:              count 6 [1;2;3;1;4;1] = 0.
 (* FILL IN HERE *) Admitted.

(** Multiset [sum] is similar to set [union]: [sum a b] contains all
    the elements of [a] and of [b].  (Mathematicians usually define
    [union] on multisets a little bit differently -- using max instead
    of sum -- which is why we don't use that name for this operation.)
    For [sum] we're giving you a header that does not give explicit
    names to the arguments.  Moreover, it uses the keyword
    [Definition] instead of [Fixpoint], so even if you had names for
    the arguments, you wouldn't be able to process them recursively.
    The point of stating the question this way is to encourage you to
    think about whether [sum] can be implemented in another way --
    perhaps by using functions that have already been defined.  *)

Definition sum : bag -> bag -> bag
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_sum1:              count 1 (sum [1;2;3] [1;4;1]) = 3.
 (* FILL IN HERE *) Admitted.

Definition add (v:nat) (s:bag) : bag
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_add1:                count 1 (add 1 [1;4;1]) = 3.
 (* FILL IN HERE *) Admitted.
Example test_add2:                count 5 (add 1 [1;4;1]) = 0.
 (* FILL IN HERE *) Admitted.

Definition member (v:nat) (s:bag) : bool
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_member1:             member 1 [1;4;1] = true.
 (* FILL IN HERE *) Admitted.

Example test_member2:             member 2 [1;4;1] = false.
 (* FILL IN HERE *) Admitted.
(** [] *)

(** **** Exercise: 3 stars, optional (bag_more_functions)  *)
(** Here are some more bag functions for you to practice with. *)

(** When remove_one is applied to a bag without the number to remove,
   it should return the same bag unchanged. *)

Fixpoint remove_one (v:nat) (s:bag) : bag
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_remove_one1:
  count 5 (remove_one 5 [2;1;5;4;1]) = 0.
  (* FILL IN HERE *) Admitted.

Example test_remove_one2:
  count 5 (remove_one 5 [2;1;4;1]) = 0.
  (* FILL IN HERE *) Admitted.

Example test_remove_one3:
  count 4 (remove_one 5 [2;1;4;5;1;4]) = 2.
  (* FILL IN HERE *) Admitted.

Example test_remove_one4:
  count 5 (remove_one 5 [2;1;5;4;5;1;4]) = 1.
  (* FILL IN HERE *) Admitted.

Fixpoint remove_all (v:nat) (s:bag) : bag
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_remove_all1:  count 5 (remove_all 5 [2;1;5;4;1]) = 0.
 (* FILL IN HERE *) Admitted.
Example test_remove_all2:  count 5 (remove_all 5 [2;1;4;1]) = 0.
 (* FILL IN HERE *) Admitted.
Example test_remove_all3:  count 4 (remove_all 5 [2;1;4;5;1;4]) = 2.
 (* FILL IN HERE *) Admitted.
Example test_remove_all4:  count 5 (remove_all 5 [2;1;5;4;5;1;4;5;1;4]) = 0.
 (* FILL IN HERE *) Admitted.

Fixpoint subset (s1:bag) (s2:bag) : bool
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_subset1:              subset [1;2] [2;1;4;1] = true.
 (* FILL IN HERE *) Admitted.
Example test_subset2:              subset [1;2;2] [2;1;4;1] = false.
 (* FILL IN HERE *) Admitted.
(** [] *)

(** **** Exercise: 3 stars, recommended (bag_theorem)  *)
(** Write down an interesting theorem [bag_theorem] about bags
    involving the functions [count] and [add], and prove it.  Note
    that, since this problem is somewhat open-ended, it's possible
    that you may come up with a theorem which is true, but whose proof
    requires techniques you haven't learned yet.  Feel free to ask for
    help if you get stuck! *)

(*
Theorem bag_theorem : ...
Proof.
  ...
Qed.
*)

(** [] *)

(* ################################################################# *)
(** * Reasoning About Lists *)

(** As with numbers, simple facts about list-processing
    functions can sometimes be proved entirely by simplification.  For
    example, the simplification performed by [reflexivity] is enough
    for this theorem... *)

Theorem nil_app : forall l:natlist,
  [] ++ l = l.
Proof. reflexivity. Qed.

(** ... because the [[]] is substituted into the
    "scrutinee" (the expression whose value is being "scrutinized" by
    the match) in the definition of [app], allowing the match itself
    to be simplified. *)

(** Also, as with numbers, it is sometimes helpful to perform case
    analysis on the possible shapes (empty or non-empty) of an unknown
    list. *)

Theorem tl_length_pred : forall l:natlist,
  pred (length l) = length (tl l).
Proof.
  intros l. destruct l as [| n l'].
  - (* l = nil *)
    reflexivity.
  - (* l = cons n l' *)
    reflexivity.  Qed.

(** Here, the [nil] case works because we've chosen to define
    [tl nil = nil]. Notice that the [as] annotation on the [destruct]
    tactic here introduces two names, [n] and [l'], corresponding to
    the fact that the [cons] constructor for lists takes two
    arguments (the head and tail of the list it is constructing). *)

(** Usually, though, interesting theorems about lists require
    induction for their proofs. *)

(* ----------------------------------------------------------------- *)
(** *** Micro-Sermon *)

(** Simply reading example proof scripts will not get you very far!
    It is important to work through the details of each one, using Coq
    and thinking about what each step achieves.  Otherwise it is more
    or less guaranteed that the exercises will make no sense when you
    get to them.  'Nuff said. *)

(* ================================================================= *)
(** ** Induction on Lists *)

(** Proofs by induction over datatypes like [natlist] are a
    little less familiar than standard natural number induction, but
    the idea is equally simple.  Each [Inductive] declaration defines
    a set of data values that can be built up using the declared
    constructors: a boolean can be either [true] or [false]; a number
    can be either [O] or [S] applied to another number; a list can be
    either [nil] or [cons] applied to a number and a list.

    Moreover, applications of the declared constructors to one another
    are the _only_ possible shapes that elements of an inductively
    defined set can have, and this fact directly gives rise to a way
    of reasoning about inductively defined sets: a number is either
    [O] or else it is [S] applied to some _smaller_ number; a list is
    either [nil] or else it is [cons] applied to some number and some
    _smaller_ list; etc. So, if we have in mind some proposition [P]
    that mentions a list [l] and we want to argue that [P] holds for
    _all_ lists, we can reason as follows:

      - First, show that [P] is true of [l] when [l] is [nil].

      - Then show that [P] is true of [l] when [l] is [cons n l'] for
        some number [n] and some smaller list [l'], assuming that [P]
        is true for [l'].

    Since larger lists can only be built up from smaller ones,
    eventually reaching [nil], these two arguments together establish
    the truth of [P] for all lists [l].  Here's a concrete example: *)

Theorem app_assoc : forall l1 l2 l3 : natlist,
  (l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3).
Proof.
  intros l1 l2 l3. induction l1 as [| n l1' IHl1'].
  - (* l1 = nil *)
    reflexivity.
  - (* l1 = cons n l1' *)
    simpl. rewrite -> IHl1'. reflexivity.  Qed.

(** Notice that, as when doing induction on natural numbers, the
    [as...] clause provided to the [induction] tactic gives a name to
    the induction hypothesis corresponding to the smaller list [l1']
    in the [cons] case. Once again, this Coq proof is not especially
    illuminating as a static written document -- it is easy to see
    what's going on if you are reading the proof in an interactive Coq
    session and you can see the current goal and context at each
    point, but this state is not visible in the written-down parts of
    the Coq proof.  So a natural-language proof -- one written for
    human readers -- will need to include more explicit signposts; in
    particular, it will help the reader stay oriented if we remind
    them exactly what the induction hypothesis is in the second
    case. *)

(** For comparison, here is an informal proof of the same theorem. *)

(** _Theorem_: For all lists [l1], [l2], and [l3],
   [(l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3)].

   _Proof_: By induction on [l1].

   - First, suppose [l1 = []].  We must show

       ([] ++ l2) ++ l3 = [] ++ (l2 ++ l3),

     which follows directly from the definition of [++].

   - Next, suppose [l1 = n::l1'], with

       (l1' ++ l2) ++ l3 = l1' ++ (l2 ++ l3)

     (the induction hypothesis). We must show

       ((n :: l1') ++ l2) ++ l3 = (n :: l1') ++ (l2 ++ l3).

     By the definition of [++], this follows from

       n :: ((l1' ++ l2) ++ l3) = n :: (l1' ++ (l2 ++ l3)),

     which is immediate from the induction hypothesis.  [] *)

(* ----------------------------------------------------------------- *)
(** *** Reversing a List *)

(** For a slightly more involved example of inductive proof over
    lists, suppose we use [app] to define a list-reversing function
    [rev]: *)

Fixpoint rev (l:natlist) : natlist :=
  match l with
  | nil    => nil
  | h :: t => rev t ++ [h]
  end.

Example test_rev1:            rev [1;2;3] = [3;2;1].
Proof. reflexivity.  Qed.
Example test_rev2:            rev nil = nil.
Proof. reflexivity.  Qed.

(* ----------------------------------------------------------------- *)
(** *** Properties of [rev] *)

(** Now let's prove some theorems about our newly defined [rev].
    For something a bit more challenging than what we've seen, let's
    prove that reversing a list does not change its length.  Our first
    attempt gets stuck in the successor case... *)

Theorem rev_length_firsttry : forall l : natlist,
  length (rev l) = length l.
Proof.
  intros l. induction l as [| n l' IHl'].
  - (* l = [] *)
    reflexivity.
  - (* l = n :: l' *)
    (* This is the tricky case.  Let's begin as usual
       by simplifying. *)
    simpl.
    (* Now we seem to be stuck: the goal is an equality
       involving [++], but we don't have any useful equations
       in either the immediate context or in the global
       environment!  We can make a little progress by using
       the IH to rewrite the goal... *)
    rewrite <- IHl'.
    (* ... but now we can't go any further. *)
Abort.

(** So let's take the equation relating [++] and [length] that
    would have enabled us to make progress and prove it as a separate
    lemma. *)

Theorem app_length : forall l1 l2 : natlist,
  length (l1 ++ l2) = (length l1) + (length l2).
Proof.
  (* WORKED IN CLASS *)
  intros l1 l2. induction l1 as [| n l1' IHl1'].
  - (* l1 = nil *)
    reflexivity.
  - (* l1 = cons *)
    simpl. rewrite -> IHl1'. reflexivity.  Qed.

(** Note that, to make the lemma as general as possible, we
    quantify over _all_ [natlist]s, not just those that result from an
    application of [rev].  This should seem natural, because the truth
    of the goal clearly doesn't depend on the list having been
    reversed.  Moreover, it is easier to prove the more general
    property. *)

(** Now we can complete the original proof. *)

Theorem rev_length : forall l : natlist,
  length (rev l) = length l.
Proof.
  intros l. induction l as [| n l' IHl'].
  - (* l = nil *)
    reflexivity.
  - (* l = cons *)
    simpl. rewrite -> app_length, plus_comm.
    simpl. rewrite -> IHl'. reflexivity.  Qed.

(** For comparison, here are informal proofs of these two theorems:

    _Theorem_: For all lists [l1] and [l2],
       [length (l1 ++ l2) = length l1 + length l2].

    _Proof_: By induction on [l1].

    - First, suppose [l1 = []].  We must show

        length ([] ++ l2) = length [] + length l2,

      which follows directly from the definitions of
      [length] and [++].

    - Next, suppose [l1 = n::l1'], with

        length (l1' ++ l2) = length l1' + length l2.

      We must show

        length ((n::l1') ++ l2) = length (n::l1') + length l2).

      This follows directly from the definitions of [length] and [++]
      together with the induction hypothesis. [] *)

(** _Theorem_: For all lists [l], [length (rev l) = length l].

    _Proof_: By induction on [l].

      - First, suppose [l = []].  We must show

          length (rev []) = length [],

        which follows directly from the definitions of [length]
        and [rev].

      - Next, suppose [l = n::l'], with

          length (rev l') = length l'.

        We must show

          length (rev (n :: l')) = length (n :: l').

        By the definition of [rev], this follows from

          length ((rev l') ++ [n]) = S (length l')

        which, by the previous lemma, is the same as

          length (rev l') + length [n] = S (length l').

        This follows directly from the induction hypothesis and the
        definition of [length]. [] *)

(** The style of these proofs is rather longwinded and pedantic.
    After the first few, we might find it easier to follow proofs that
    give fewer details (which can easily work out in our own minds or
    on scratch paper if necessary) and just highlight the non-obvious
    steps.  In this more compressed style, the above proof might look
    like this: *)

(** _Theorem_:
     For all lists [l], [length (rev l) = length l].

    _Proof_: First, observe that [length (l ++ [n]) = S (length l)]
     for any [l] (this follows by a straightforward induction on [l]).
     The main property again follows by induction on [l], using the
     observation together with the induction hypothesis in the case
     where [l = n'::l']. [] *)

(** Which style is preferable in a given situation depends on
    the sophistication of the expected audience and how similar the
    proof at hand is to ones that the audience will already be
    familiar with.  The more pedantic style is a good default for our
    present purposes. *)



(* ================================================================= *)
(** ** [Search] *)

(** We've seen that proofs can make use of other theorems we've
    already proved, e.g., using [rewrite].  But in order to refer to a
    theorem, we need to know its name!  Indeed, it is often hard even
    to remember what theorems have been proven, much less what they
    are called.

    Coq's [Search] command is quite helpful with this.  Typing
    [Search foo] will cause Coq to display a list of all theorems
    involving [foo].  For example, try uncommenting the following line
    to see a list of theorems that we have proved about [rev]: *)

(*  Search rev. *)

(** Keep [Search] in mind as you do the following exercises and
    throughout the rest of the book; it can save you a lot of time!

    If you are using ProofGeneral, you can run [Search] with [C-c
    C-a C-a]. Pasting its response into your buffer can be
    accomplished with [C-c C-;]. *)

(* ================================================================= *)
(** ** List Exercises, Part 1 *)

(** **** Exercise: 3 stars (list_exercises)  *)
(** More practice with lists: *)

Theorem app_nil_r : forall l : natlist,
  l ++ [] = l.
Proof.
  (* FILL IN HERE *) Admitted.

Theorem rev_app_distr: forall l1 l2 : natlist,
  rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof.
  (* FILL IN HERE *) Admitted.

Theorem rev_involutive : forall l : natlist,
  rev (rev l) = l.
Proof.
  (* FILL IN HERE *) Admitted.

(** There is a short solution to the next one.  If you find yourself
    getting tangled up, step back and try to look for a simpler
    way. *)

Theorem app_assoc4 : forall l1 l2 l3 l4 : natlist,
  l1 ++ (l2 ++ (l3 ++ l4)) = ((l1 ++ l2) ++ l3) ++ l4.
Proof.
  (* FILL IN HERE *) Admitted.

(** An exercise about your implementation of [nonzeros]: *)

Lemma nonzeros_app : forall l1 l2 : natlist,
  nonzeros (l1 ++ l2) = (nonzeros l1) ++ (nonzeros l2).
Proof.
  (* FILL IN HERE *) Admitted.
(** [] *)

(** **** Exercise: 2 stars (beq_natlist)  *)
(** Fill in the definition of [beq_natlist], which compares
    lists of numbers for equality.  Prove that [beq_natlist l l]
    yields [true] for every list [l]. *)

Fixpoint beq_natlist (l1 l2 : natlist) : bool
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_beq_natlist1 :
  (beq_natlist nil nil = true).
 (* FILL IN HERE *) Admitted.

Example test_beq_natlist2 :
  beq_natlist [1;2;3] [1;2;3] = true.
(* FILL IN HERE *) Admitted.

Example test_beq_natlist3 :
  beq_natlist [1;2;3] [1;2;4] = false.
 (* FILL IN HERE *) Admitted.

Theorem beq_natlist_refl : forall l:natlist,
  true = beq_natlist l l.
Proof.
  (* FILL IN HERE *) Admitted.
(** [] *)

(* ================================================================= *)
(** ** List Exercises, Part 2 *)

(** **** Exercise: 3 stars, advanced (bag_proofs)  *)
(** Here are a couple of little theorems to prove about your
    definitions about bags above. *)

Theorem count_member_nonzero : forall (s : bag),
  leb 1 (count 1 (1 :: s)) = true.
Proof.
  (* FILL IN HERE *) Admitted.

(** The following lemma about [leb] might help you in the next proof. *)

Theorem ble_n_Sn : forall n,
  leb n (S n) = true.
Proof.
  intros n. induction n as [| n' IHn'].
  - (* 0 *)
    simpl.  reflexivity.
  - (* S n' *)
    simpl.  rewrite IHn'.  reflexivity.  Qed.

Theorem remove_decreases_count: forall (s : bag),
  leb (count 0 (remove_one 0 s)) (count 0 s) = true.
Proof.
  (* FILL IN HERE *) Admitted.
(** [] *)

(** **** Exercise: 3 stars, optional (bag_count_sum)  *)
(** Write down an interesting theorem [bag_count_sum] about bags
    involving the functions [count] and [sum], and prove it using
    Coq.  (You may find that the difficulty of the proof depends on
    how you defined [count]!) *)
(* FILL IN HERE *)
(** [] *)

(** **** Exercise: 4 stars, advanced (rev_injective)  *)
(** Prove that the [rev] function is injective -- that is,

    forall (l1 l2 : natlist), rev l1 = rev l2 -> l1 = l2.

(There is a hard way and an easy way to do this.) *)

(* FILL IN HERE *)
(** [] *)

(* ################################################################# *)
(** * Options *)

(** Suppose we want to write a function that returns the [n]th
    element of some list.  If we give it type [nat -> natlist -> nat],
    then we'll have to choose some number to return when the list is
    too short... *)

Fixpoint nth_bad (l:natlist) (n:nat) : nat :=
  match l with
  | nil => 42  (* arbitrary! *)
  | a :: l' => match beq_nat n O with
               | true => a
               | false => nth_bad l' (pred n)
               end
  end.

(** This solution is not so good: If [nth_bad] returns [42], we
    can't tell whether that value actually appears on the input
    without further processing. A better alternative is to change the
    return type of [nth_bad] to include an error value as a possible
    outcome. We call this type [natoption]. *)

Inductive natoption : Type :=
  | Some : nat -> natoption
  | None : natoption.

(** We can then change the above definition of [nth_bad] to
    return [None] when the list is too short and [Some a] when the
    list has enough members and [a] appears at position [n]. We call
    this new function [nth_error] to indicate that it may result in an
    error. *)

Fixpoint nth_error (l:natlist) (n:nat) : natoption :=
  match l with
  | nil => None
  | a :: l' => match beq_nat n O with
               | true => Some a
               | false => nth_error l' (pred n)
               end
  end.

Example test_nth_error1 : nth_error [4;5;6;7] 0 = Some 4.
Proof. reflexivity. Qed.
Example test_nth_error2 : nth_error [4;5;6;7] 3 = Some 7.
Proof. reflexivity. Qed.
Example test_nth_error3 : nth_error [4;5;6;7] 9 = None.
Proof. reflexivity. Qed.

(** (In the HTML version, the boilerplate proofs of these
    examples are elided.  Click on a box if you want to see one.)

    This example is also an opportunity to introduce one more small
    feature of Coq's programming language: conditional
    expressions... *)


Fixpoint nth_error' (l:natlist) (n:nat) : natoption :=
  match l with
  | nil => None
  | a :: l' => if beq_nat n O then Some a
               else nth_error' l' (pred n)
  end.

(** Coq's conditionals are exactly like those found in any other
    language, with one small generalization.  Since the boolean type
    is not built in, Coq actually supports conditional expressions over
    _any_ inductively defined type with exactly two constructors.  The
    guard is considered true if it evaluates to the first constructor
    in the [Inductive] definition and false if it evaluates to the
    second. *)

(** The function below pulls the [nat] out of a [natoption], returning
    a supplied default in the [None] case. *)

Definition option_elim (d : nat) (o : natoption) : nat :=
  match o with
  | Some n' => n'
  | None => d
  end.

(** **** Exercise: 2 stars (hd_error)  *)
(** Using the same idea, fix the [hd] function from earlier so we don't
    have to pass a default element for the [nil] case.  *)

Definition hd_error (l : natlist) : natoption
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_hd_error1 : hd_error [] = None.
 (* FILL IN HERE *) Admitted.

Example test_hd_error2 : hd_error [1] = Some 1.
 (* FILL IN HERE *) Admitted.

Example test_hd_error3 : hd_error [5;6] = Some 5.
 (* FILL IN HERE *) Admitted.
(** [] *)

(** **** Exercise: 1 star, optional (option_elim_hd)  *)
(** This exercise relates your new [hd_error] to the old [hd]. *)

Theorem option_elim_hd : forall (l:natlist) (default:nat),
  hd default l = option_elim default (hd_error l).
Proof.
  (* FILL IN HERE *) Admitted.
(** [] *)

End NatList.

(* ################################################################# *)
(** * Partial Maps *)

(** As a final illustration of how data structures can be defined in
    Coq, here is a simple _partial map_ data type, analogous to the
    map or dictionary data structures found in most programming
    languages. *)

(** First, we define a new inductive datatype [id] to serve as the
    "keys" of our partial maps. *)

Inductive id : Type :=
  | Id : nat -> id.

(** Internally, an [id] is just a number.  Introducing a separate type
    by wrapping each nat with the tag [Id] makes definitions more
    readable and gives us the flexibility to change representations
    later if we wish. *)

(** We'll also need an equality test for [id]s: *)

Definition beq_id (x1 x2 : id) :=
  match x1, x2 with
  | Id n1, Id n2 => beq_nat n1 n2
  end.

(** **** Exercise: 1 star (beq_id_refl)  *)
Theorem beq_id_refl : forall x, true = beq_id x x.
Proof.
  (* FILL IN HERE *) Admitted.
(** [] *)

(** Now we define the type of partial maps: *)

Module PartialMap.
Export NatList.
  
Inductive partial_map : Type :=
  | empty  : partial_map
  | record : id -> nat -> partial_map -> partial_map.

(** This declaration can be read: "There are two ways to construct a
    [partial_map]: either using the constructor [empty] to represent an
    empty partial map, or by applying the constructor [record] to
    a key, a value, and an existing [partial_map] to construct a
    [partial_map] with an additional key-to-value mapping." *)

(** The [update] function overrides the entry for a given key in a
    partial map (or adds a new entry if the given key is not already
    present). *)

Definition update (d : partial_map)
                  (x : id) (value : nat)
                  : partial_map :=
  record x value d.

(** Last, the [find] function searches a [partial_map] for a given
    key.  It returns [None] if the key was not found and [Some val] if
    the key was associated with [val]. If the same key is mapped to
    multiple values, [find] will return the first one it
    encounters. *)

Fixpoint find (x : id) (d : partial_map) : natoption :=
  match d with
  | empty         => None
  | record y v d' => if beq_id x y
                     then Some v
                     else find x d'
  end.


(** **** Exercise: 1 star (update_eq)  *)
Theorem update_eq :
  forall (d : partial_map) (x : id) (v: nat),
    find x (update d x v) = Some v.
Proof.
 (* FILL IN HERE *) Admitted.
(** [] *)

(** **** Exercise: 1 star (update_neq)  *)
Theorem update_neq :
  forall (d : partial_map) (x y : id) (o: nat),
    beq_id x y = false -> find x (update d y o) = find x d.
Proof.
 (* FILL IN HERE *) Admitted.
(** [] *)
End PartialMap.

(** **** Exercise: 2 stars (baz_num_elts)  *)
(** Consider the following inductive definition: *)

Inductive baz : Type :=
  | Baz1 : baz -> baz
  | Baz2 : baz -> bool -> baz.

(** How _many_ elements does the type [baz] have?  (Answer in English
    or the natural language of your choice.)

(* FILL IN HERE *)
*)
(** [] *)

(** $Date: 2017-10-10 09:30:37 -0400 (Tue, 10 Oct 2017) $ *)