Acciones

Tema 3: Razonamiento estructurado sobre programas en Isabelle/HOL

De Razonamiento automático (2019-20)

Revisión del 14:41 14 nov 2019 de Jalonso (discusión | contribs.) (Página creada con «<source lang="isabelle"> chapter ‹Tema 3: Razonamiento estructurado sobre programas› theory T3_Razonamiento_estructurado_sobre_programas imports Main begin text ‹E…»)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
chapter Tema 3: Razonamiento estructurado sobre programas

theory T3_Razonamiento_estructurado_sobre_programas
imports Main 
begin

text En este tema se demuestra con Isabelle las propiedades de los
  programas funcionales como se expone en el tema 2a y se demostraron
  automáticamente en el tema 2b. A diferencia del tema 2b, ahora
  nos fijamos no sólo en el método de demostración sino en la estructura
  de la prueba resaltando su semejanza con las del tema 2a.

declare [[names_short]]

section Razonamiento ecuacional

text ----------------------------------------------------------------
  Ejemplo 1. Definir, por recursión, la función
     longitud :: 'a list  nat
  tal que (longitud xs) es la longitud de la listas xs. Por ejemplo,
     longitud [a,c,d] = 3
  -------------------------------------------------------------------

fun longitud :: "'a list ⇒ nat" where
  "longitud []     = 0"
| "longitud (x#xs) = 1 + longitud xs"
   
value "longitud [a,c,d] = 3"

text --------------------------------------------------------------- 
  Ejemplo 2. Demostrar que 
     longitud [a,c,d] = 3
  -------------------------------------------------------------------

lemma "longitud [a,c,d] = 3"
  by simp

text --------------------------------------------------------------- 
  Ejemplo 3. Definir la función
     fun intercambia :: 'a × 'b  'b × 'a
  tal que (intercambia p) es el par obtenido intercambiando las
  componentes del par p. Por ejemplo,
     intercambia (u,v) = (v,u)
  ------------------------------------------------------------------

fun intercambia :: "'a × 'b ⇒ 'b × 'a" where
  "intercambia (x,y) = (y,x)"

value "intercambia (u,v) = (v,u)"

text --------------------------------------------------------------- 
  Ejemplo 4. (p.6) Demostrar que 
     intercambia (intercambia (x,y)) = (x,y)
  -------------------------------------------------------------------

lemma "intercambia (intercambia (x,y)) = (x,y)"
proof -
  have "intercambia (intercambia (x,y)) = intercambia (y,x)"  
    by (simp only: intercambia.simps)
  also have "… = (x,y)" 
    by (simp only: intercambia.simps)
  finally show "intercambia (intercambia (x,y)) = (x,y)" 
    by simp
qed

text Notas sobre el lenguaje: En la demostración anterior se ha usado
  · "proof" para iniciar la prueba,
  · "-" (después de "proof") para no usar el método por defecto,
  · "have" para establecer un paso,
  · "by (simp only: intercambia.simps)" para indicar que sólo se usa
    como regla de escritura la correspondiente a la definición de
    intercambia,
  · "also" para encadenar pasos ecuacionales,
  · "..." para representar la derecha de la igualdad anterior en un
    razonamiento ecuacional,
  · "finally" para indicar el último pasa de un razonamiento ecuacional,
  · "show" para establecer la conclusión.
  · "by simp" para indicar el método de demostración por simplificación y 
  · "qed" para terminar la pruebas,

(* Demostración declarativa simplificada *)
lemma "intercambia (intercambia (x,y)) = (x,y)"
proof -
  have "intercambia (intercambia (x,y)) = intercambia (y,x)"  by simp
  also have "... = (x,y)" by simp 
  finally show "intercambia (intercambia (x,y)) = (x,y)" by simp
qed

text 
  Nota: La diferencia entre las dos demostraciones es que en los dos
  primeros pasos no se explicita la regla de simplificación. 

text --------------------------------------------------------------- 
  Ejemplo 5. Definir, por recursión, la función
     inversa :: 'a list  'a list
  tal que (inversa xs) es la lista obtenida invirtiendo el orden de los
  elementos de xs. Por ejemplo,
     inversa [a,d,c] = [c,d,a]
  ------------------------------------------------------------------

fun inversa :: "'a list ⇒ 'a list" where
  "inversa []     = []"
| "inversa (x#xs) = inversa xs @ [x]"

value "inversa [a,d,c] = [c,d,a]"

text --------------------------------------------------------------- 
  Ejemplo 6. (p. 9) Demostrar que 
     inversa [x] = [x]
  -------------------------------------------------------------------

(* La demostración declarativa es *)
lemma "inversa [x] = [x]"
proof -
  have "inversa [x] = inversa (x#[])" by simp
  also have "… = (inversa []) @ [x]" by (simp only: inversa.simps(2))
  also have "… = [] @ [x]" by (simp only: inversa.simps(1))
  also have "… = [x]" by (simp only: append_Nil) 
  finally show "inversa [x] = [x]" by simp
qed

(* La demostración declarativa simplificada es *)
lemma "inversa [x] = [x]"
proof -
  have "inversa [x] = inversa (x#[])" by simp
  also have "… = (inversa []) @ [x]" by simp
  also have "… = [] @ [x]" by simp
  also have "… = [x]" by simp 
  finally show "inversa [x] = [x]" by simp
qed

section Razonamiento por inducción sobre los naturales

text --------------------------------------------------------------- 
  Ejemplo 7. Definir la función
     repite :: nat  'a  'a list
  tal que (repite n x) es la lista formada por n copias del elemento
  x. Por ejemplo, 
     repite 3 a = [a,a,a]
  ------------------------------------------------------------------

fun repite :: "nat ⇒ 'a ⇒ 'a list" where
  "repite 0 x       = []"
| "repite (Suc n) x = x # (repite n x)"

value "repite 3 a = [a,a,a]"

text --------------------------------------------------------------- 
  Ejemplo 8. (p. 18) Demostrar que 
     longitud (repite n x) = n
  -------------------------------------------------------------------

(* declare [[show_types]] *)

(* La demostración detallada es *)
lemma "longitud (repite n x) = n"
proof (induct n)
  have "longitud (repite 0 x) = longitud ([] :: 'a list)" 
    by (simp only: repite.simps(1))
  also have "… = 0"
    by (simp only: longitud.simps(1))
  finally show "longitud (repite 0 x) = 0" 
    by simp
next 
  fix n
  assume HI: "longitud (repite n x) = n"
  have "longitud (repite (Suc n) x) = longitud (x # (repite n x))" 
    by (simp only: repite.simps(2))
  also have "… = 1 + longitud (repite n x)" 
    by (simp only: longitud.simps(2))
  also have "… = 1 + n" 
    by (simp only: HI)
  finally show "longitud (repite (Suc n) x) = Suc n" 
    by simp
qed

(* La demostración simplificada es *)
lemma "longitud (repite n x) = n"
proof (induct n)
  show "longitud (repite 0 x) = 0" 
    by simp
next 
  fix n
  assume HI: "longitud (repite n x) = n"
  have "longitud (repite (Suc n) x) = longitud (x # (repite n x))" 
    by simp
  also have "… = 1 + longitud (repite n x)" 
    by simp
  also have "… = 1 + n" 
    using HI by simp
  finally show "longitud (repite (Suc n) x) = Suc n" by simp
qed

text Comentarios sobre la demostración anterior:
  · A la derecha de proof se indica el método de la demostración.
  · (induct n) indica que la demostración se hará por inducción en n.
  · Se generan dos subobjetivos correspondientes a la base y el paso de
    inducción:
    1. longitud (repite 0 x) = 0
    2. n. longitud (repite n x) = n  longitud (repite (Suc n) x) = Suc n
    donde n se lee "para todo n".  
  · "next" indica el siguiente subobjetivo.
  · "fix n" indica "sea n un número natural cualquiera"
  · assume HI: "longitud (repite n x) = n" indica «supongamos que 
    "longitud (repite n x) = n" y sea HI la etiqueta de este supuesto».
  · "using HI" usando la propiedad etiquetada con HI. 

section Razonamiento por inducción sobre listas

text --------------------------------------------------------------- 
  Ejemplo 9. Definir la función
     conc :: 'a list  'a list  'a list
  tal que (conc xs ys) es la concatención de las listas xs e ys. Por
  ejemplo, 
     conc [a,d] [b,d,a,c] = [a,d,b,d,a,c]
  ------------------------------------------------------------------

fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where
  "conc []     ys = ys"
| "conc (x#xs) ys = x # (conc xs ys)"

value "conc [a,d] [b,d,a,c] = [a,d,b,d,a,c]"

text --------------------------------------------------------------- 
  Ejemplo 10. (p. 24) Demostrar que 
     conc xs (conc ys zs) = (conc xs ys) zs
  -------------------------------------------------------------------

(* La demostración detallada es *)
lemma "conc xs (conc ys zs) = conc (conc xs ys) zs"
proof (induct xs)
  have "conc [] (conc ys zs) = conc ys zs" 
    by (simp only: conc.simps(1))
  also have "… = conc (conc [] ys) zs"
    by (simp only: conc.simps(1))
  finally show "conc [] (conc ys zs) = conc (conc [] ys) zs" 
    by simp 
next
  fix x xs
  assume HI: "conc xs (conc ys zs) = conc (conc xs ys) zs" 
  have "conc (x # xs) (conc ys zs) = x # (conc xs (conc ys zs))" 
    by (simp only: conc.simps(2))
  also have "… = x # (conc (conc xs ys) zs)" 
    by (simp only: HI)
  also have "… = conc (conc (x # xs) ys) zs" 
    by (simp only: conc.simps(2))
  finally show "conc (x # xs) (conc ys zs) = conc (conc (x # xs) ys) zs" 
    by simp
qed

(* La demostración simplificada es *)
lemma "conc xs (conc ys zs) = conc (conc xs ys) zs"
proof (induct xs)
  show "conc [] (conc ys zs) = conc (conc [] ys) zs" by simp
next
  fix x xs
  assume HI: "conc xs (conc ys zs) = conc (conc xs ys) zs" 
  have "conc (x # xs) (conc ys zs) = x # (conc xs (conc ys zs))" 
    by simp
  also have "… = x # (conc (conc xs ys) zs)" 
    using HI by simp
  also have "… = conc (conc (x # xs) ys) zs" 
    by simp
  finally show "conc (x # xs) (conc ys zs) = conc (conc (x # xs) ys) zs" 
    by simp
qed

text Comentario sobre la demostración anterior
  · (induct xs) genera dos subobjetivos:
    1. conc [] (conc ys zs) = conc (conc [] ys) zs
    2. a xs. conc xs (conc ys zs) = conc (conc xs ys) zs 
              conc (a#xs) (conc ys zs) = conc (conc (a#xs) ys) zs

text --------------------------------------------------------------- 
  Ejemplo 11. Refutar que 
     conc xs ys = conc ys xs
  -------------------------------------------------------------------

lemma "conc xs ys = conc ys xs"
  quickcheck
  oops

text Encuentra el contraejemplo, 
  xs = [a2]
  ys = [a1]

text --------------------------------------------------------------- 
  Ejemplo 12. (p. 28) Demostrar que 
     conc xs [] = xs
  -------------------------------------------------------------------

(* La demostración detallada es *)
lemma "conc xs [] = xs"
proof (induct xs)
  show "conc [] [] = []" 
    by (simp only: conc.simps(1))
next 
  fix x xs
  assume HI: "conc xs [] = xs" 
  have "conc (x # xs) [] = x # (conc xs [])" 
    by (simp only: conc.simps(2))
  also have "… = x # xs" 
    by (simp only: HI)
  finally show "conc (x # xs) [] = x # xs" 
    by simp
qed

(* La demostración simplificada es *)
lemma "conc xs [] = xs"
proof (induct xs)
  show "conc [] [] = []" by simp
next 
  fix x xs
  assume HI: "conc xs [] = xs" 
  have "conc (x # xs) [] = x # (conc xs [])" by simp
  also have "… = x # xs" using HI by simp
  finally show "conc (x # xs) [] = x # xs" by simp
qed

text --------------------------------------------------------------- 
  Ejemplo 13. (p. 30) Demostrar que 
     longitud (conc xs ys) = longitud xs + longitud ys
  -------------------------------------------------------------------

(* La demostración detallada es *)
lemma "longitud (conc xs ys) = longitud xs + longitud ys"
proof (induct xs)
  have "longitud (conc [] ys) = longitud ys" 
    by (simp only: conc.simps(1))
  also have "… = 0 + longitud ys"
    by (simp only: add_0)
  also  have "… = longitud [] + longitud ys"
    by (simp only: longitud.simps(1))
  finally show "longitud (conc [] ys) = longitud [] + longitud ys" 
    by simp
next
  fix x xs
  assume HI: "longitud (conc xs ys) = longitud xs + longitud ys"
  have "longitud (conc (x # xs) ys) = longitud (x # (conc xs ys))" 
    by (simp only: conc.simps(2))
  also have "… = 1 + longitud (conc xs ys)" 
    by (simp only: longitud.simps(2))
  also have "… = 1 + longitud xs + longitud ys" 
    by (simp only: HI)
  also have "… = longitud (x # xs) + longitud ys" 
    by (simp only: longitud.simps(2))
  finally show "longitud (conc (x # xs) ys) = 
                longitud (x # xs) + longitud ys" 
    by simp
qed

(* La demostración simplificada es *)
lemma "longitud (conc xs ys) = longitud xs + longitud ys"
proof (induct xs)
  show "longitud (conc [] ys) = longitud [] + longitud ys" by simp
next
  fix x xs
  assume HI: "longitud (conc xs ys) = longitud xs + longitud ys"
  have "longitud (conc (x # xs) ys) = longitud (x # (conc xs ys))" 
    by simp
  also have "… = 1 + longitud (conc xs ys)" 
    by simp
  also have "… = 1 + longitud xs + longitud ys" 
    using HI by simp
  also have "… = longitud (x # xs) + longitud ys" 
    by simp
  finally show "longitud (conc (x # xs) ys) = 
                longitud (x # xs) + longitud ys" 
    by simp
qed

section Inducción correspondiente a la definición recursiva

text --------------------------------------------------------------- 
  Ejemplo 14. Definir la función
     coge :: nat  'a list  'a list
  tal que (coge n xs) es la lista de los n primeros elementos de xs. Por 
  ejemplo, 
     coge 2 [a,c,d,b,e] = [a,c]
  ------------------------------------------------------------------

fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
  "coge n []           = []"
| "coge 0 xs           = []"
| "coge (Suc n) (x#xs) = x # (coge n xs)"

value "coge 2 [a,c,d,b,e] = [a,c]"

text --------------------------------------------------------------- 
  Ejemplo 15. Definir la función
     elimina :: nat  'a list  'a list
  tal que (elimina n xs) es la lista obtenida eliminando los n primeros
  elementos de xs. Por ejemplo, 
     elimina 2 [a,c,d,b,e] = [d,b,e]
  ------------------------------------------------------------------

fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
  "elimina n []           = []"
| "elimina 0 xs           = xs"
| "elimina (Suc n) (x#xs) = elimina n xs"

value "elimina 2 [a,c,d,b,e] = [d,b,e]"

text --------------------------------------------------------------- 
  Ejemplo 16. (p. 35) Demostrar que 
     conc (coge n xs) (elimina n xs) = xs
  -------------------------------------------------------------------

(* La demostración detallada es *)
lemma "conc (coge n xs) (elimina n xs) = xs"
proof (induct rule: coge.induct)
  fix n
  have "conc (coge n []) (elimina n []) = conc [] (elimina n [])"
    by (simp only: coge.simps(1))
  also have "… = elimina n []"
    by (simp only: conc.simps(1))
  also have "… = []"
    by (simp only: elimina.simps(1))
  show "conc (coge n []) (elimina n []) = []" 
    by simp
next
  fix x xs
  have "conc (coge 0 (x#xs)) (elimina 0 (x#xs)) = 
        conc [] (elimina 0 (x#xs))" 
    by (simp only: coge.simps(2))
  also have "… = elimina 0 (x#xs)"
    by  (simp only: conc.simps(1))
  also have "… = x # xs"
    by  (simp only: elimina.simps(2))
  finally show "conc (coge 0 (x#xs)) (elimina 0 (x#xs)) = x#xs" 
    by simp 
next
  fix n x xs
  assume HI: "conc (coge n xs) (elimina n xs) = xs"
  have "conc (coge (Suc n) (x # xs)) (elimina (Suc n) (x # xs)) = 
        conc (x # (coge n xs)) (elimina n xs)" 
    by (simp only: coge.simps(3) 
                   elimina.simps(3))
  also have "… = x # (conc (coge n xs) (elimina n xs))" 
    by (simp only: conc.simps(2))
  also have "… = x#xs" 
    by (simp only: HI)  
  finally show "conc (coge (Suc n) (x#xs)) (elimina (Suc n) (x#xs)) = 
                x#xs"
    by simp
qed

(* La demostración simplificada es *)
lemma "conc (coge n xs) (elimina n xs) = xs"
proof (induct rule: coge.induct)
  fix n
  show "conc (coge n []) (elimina n []) = []" by simp
next
  fix x xs
  show "conc (coge 0 (x#xs)) (elimina 0 (x#xs)) = x#xs" by simp
next
  fix n x xs
  assume HI: "conc (coge n xs) (elimina n xs) = xs"
  have "conc (coge (Suc n) (x#xs)) (elimina (Suc n) (x#xs)) = 
        conc (x#(coge n xs)) (elimina n xs)" by simp
  also have "… = x#(conc (coge n xs) (elimina n xs))" by simp
  also have "… = x#xs" using HI by simp  
  finally show "conc (coge (Suc n) (x#xs)) (elimina (Suc n) (x#xs)) = 
                x#xs"
    by simp
qed

text   Comentario sobre la demostración anterior:
  · (induct rule: coge.induct) indica que el método de demostración es
    por el esquema de inducción correspondiente a la definición de la
    función coge.
  · Se generan 3 subobjetivos:
    · 1. n. conc (coge n []) (elimina n []) = []
    · 2. x xs. conc (coge 0 (x#xs)) (elimina 0 (x#xs)) = x#xs
    · 3. n x xs. 
            conc (coge n xs) (elimina n xs) = xs 
            conc (coge (Suc n) (x#xs)) (elimina (Suc n) (x#xs)) = x#xs

section Razonamiento por casos

text --------------------------------------------------------------- 
  Ejemplo 17. Definir la función
     esVacia :: 'a list  bool
  tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo,
     esVacia []  = True
     esVacia [1] = False
  ------------------------------------------------------------------

fun esVacia :: "'a list ⇒ bool" where
  "esVacia []     = True"
| "esVacia (x#xs) = False"

value "esVacia []  = True"
value "esVacia [a] = False"

text --------------------------------------------------------------- 
  Ejemplo 18 (p. 39) . Demostrar que 
     esVacia xs = esVacia (conc xs xs)
  -------------------------------------------------------------------

(* La demostración estructurada es *)
lemma "esVacia xs = esVacia (conc xs xs)"
proof (cases xs)
  assume "xs = []"
  then show "esVacia xs = esVacia (conc xs xs)" by simp
next
  fix y ys
  assume "xs = y#ys"
  then show "esVacia xs = esVacia (conc xs xs)" by simp
qed

text Comentarios sobre la demostración anterior:
  · "(cases xs)" es el método de demostración por casos según xs.
  · Se generan dos subobjetivos  correspondientes a los dos
    constructores de listas:
    · 1. xs = []  esVacia xs = esVacia (conc xs xs)
    · 2. y ys. xs = y#ys  esVacia xs = esVacia (conc xs xs)
  · "then" indica "usando la propiedad anterior"

(* La demostración estructurada simplificada es *)
lemma "esVacia xs = esVacia (conc xs xs)"
proof (cases xs)
  case Nil
  then show "esVacia xs = esVacia (conc xs xs)" by simp
next
  case Cons
  then show "esVacia xs = esVacia (conc xs xs)" by simp
qed

text 
  Comentarios sobre la demostración anterior:
  · "case Nil" es una abreviatura de "assume xs = []"
  · "case Cons" es una abreviatura de "fix y ys assume xs = y#ys"

(* La demostración con el patrón sugerido es *)
lemma "esVacia xs = esVacia (conc xs xs)"
proof (cases xs)
  case Nil
  then show ?thesis by simp
next
  case (Cons x xs)
  then show ?thesis by simp
qed

section Heurística de generalización

text Heurística de generalización: Cuando se use demostración 
  estructural, cuantificar universalmente las variables libres (o, 
  equivalentemente, considerar las variables libres como variables 
  arbitrarias).

text --------------------------------------------------------------- 
  Ejemplo 19. Definir la función
     inversaAc :: 'a list  'a list
  tal que (inversaAc xs) es a inversa de xs calculada usando
  acumuladores. Por ejemplo, 
     inversaAc [a,c,b,e] = [e,b,c,a]
  ------------------------------------------------------------------

fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
  "inversaAcAux [] ys     = ys"
| "inversaAcAux (x#xs) ys = inversaAcAux xs (x#ys)"

fun inversaAc :: "'a list ⇒ 'a list" where
  "inversaAc xs = inversaAcAux xs []"

value "inversaAc [a,c,b,e] = [e,b,c,a]"

text --------------------------------------------------------------- 
  Ejemplo 20. (p. 44) Demostrar que 
     inversaAcAux xs ys = (inversa xs) @ ys
  -------------------------------------------------------------------

(* La demostración detallada es *)
lemma inversaAcAux_es_inversa:
  "inversaAcAux xs ys = (inversa xs) @ ys"
proof (induct xs arbitrary: ys)
  fix ys
  have "inversaAcAux [] ys = ys"
    by (simp only: inversaAcAux.simps(1))
  also have "… = [] @ ys"
    by (simp only: append.simps(1))
  also have "… = inversa [] @ ys"
    by (simp only: inversa.simps(1))
  finally show "⋀ys. inversaAcAux [] ys = inversa [] @ ys" 
    by simp 
next
  fix a xs 
  assume HI: "⋀ys. inversaAcAux xs ys = inversa xs@ys"
  show "⋀ys. inversaAcAux (a#xs) ys = inversa (a#xs)@ys"
  proof -
    fix ys
    have "inversaAcAux (a#xs) ys = inversaAcAux xs (a#ys)" 
      by (simp only: inversaAcAux.simps(2))
    also have "… = inversa xs@(a#ys)" 
      by (simp only: HI)
    also have "… = inversa xs @ ([a] @ ys)"
      by (simp only: append.simps) 
    also have "… = (inversa xs @ [a]) @ ys"
      by (simp only: append_assoc) 
    also have "… = inversa (a # xs) @ ys"
      by (simp only: inversa.simps(2)) 
    finally show "inversaAcAux (a#xs) ys = inversa (a#xs)@ys" 
      by simp
  qed
qed


(* La demostración simplificada es *)
lemma inversaAcAux_es_inversa:
  "inversaAcAux xs ys = (inversa xs) @ ys"
proof (induct xs arbitrary: ys)
  show "⋀ys. inversaAcAux [] ys = inversa [] @ ys" by simp
next
  fix a xs 
  assume HI: "⋀ys. inversaAcAux xs ys = inversa xs@ys"
  show "⋀ys. inversaAcAux (a#xs) ys = inversa (a#xs)@ys"
  proof -
    fix ys
    have "inversaAcAux (a#xs) ys = inversaAcAux xs (a#ys)" by simp
    also have "… = inversa xs@(a#ys)" using HI by simp
    also have "… = inversa (a#xs)@ys" by simp 
    finally show "inversaAcAux (a#xs) ys = inversa (a#xs)@ys" by simp
  qed
qed

text Comentarios sobre la demostración anterior:
  · "(induct xs arbitrary: ys)" es el método de demostración por
    inducción sobre xs usando ys como variable arbitraria.
  · Se generan dos subobjetivos:
    · 1. ys. inversaAcAux [] ys = inversa [] @ ys
    · 2. a xs ys. (ys. inversaAcAux xs ys = inversa xs @ ys) 
                    inversaAcAux (a # xs) ys = inversa (a # xs) @ ys
  · Dentro de una demostración se pueden incluir otras demostraciones.
  · Para demostrar la propiedad universal "⋀ys. P(ys)" se elige una
    lista arbitraria (con "fix ys") y se demuestra "P(ys)". 

text --------------------------------------------------------------- 
  Ejemplo 21. (p. 43) Demostrar que 
     inversaAc xs = inversa xs
  -------------------------------------------------------------------

(* La demostración automática es *)
corollary "inversaAc xs = inversa xs"
  by (simp add: inversaAcAux_es_inversa)

text   Comentario de la demostración anterior:
  · "(simp add: inversaAcAux_es_inversa)" es el método de demostración
    por simplificación usando como regla de simplificación la propiedad
    inversaAcAux_es_inversa. 

section Demostración por inducción para funciones de orden superior

text --------------------------------------------------------------- 
  Ejemplo 22. Definir la función
     suma :: nat list  nat
  tal que (suma xs) es la suma de los elementos de xs. Por ejemplo,
     suma [3,2,5] = 10
  ------------------------------------------------------------------

fun suma :: "nat list ⇒ nat" where
  "suma []     = 0"
| "suma (x#xs) = x + suma xs"

value "suma [3,2,5] = 10"

text --------------------------------------------------------------- 
  Ejemplo 23. Definir la función
     map :: ('a  'b)  'a list  'b list
  tal que (map f xs) es la lista obtenida aplicando la función f a los
  elementos de xs. Por ejemplo,
     map ((*) 2) [3,2,5] = [6,4,10]
  ------------------------------------------------------------------›

fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
  "map f []     = []"
| "map f (x#xs) = (f x) # map f xs"

value "map ((*) 2) [3::nat,2,5] = [6,4,10]"

text ‹--------------------------------------------------------------- 
  Ejemplo 24. (p. 45) Demostrar que 
     suma (map ((*) 2) xs) = 2 * (suma xs)
  -------------------------------------------------------------------›

(* La demostración detallada es *)
lemma "suma (map ((*) 2) xs) = 2 * (suma xs)"
proof (induct xs)
  have "suma (map ((*) 2) []) = suma []"
    by (simp only: map.simps(1))
  also have "… = 0"
    by (simp only: suma.simps(1))
  also have "… = 2 * 0"
    by  (simp only: mult_0_right)
  also have "… = 2 * suma []"
    by (simp only: suma.simps(1))
  finally show "suma (map ((*) 2) []) = 2 * suma []" 
    by simp 
next
  fix a xs
  assume HI: "suma (map ((*) 2) xs) = 2 * suma xs"
  have "suma (map ((*) 2) (a#xs)) = suma ((2*a)#(map ((*) 2) xs))" 
    by (simp only: map.simps(2))
  also have "… = 2*a + suma (map ((*) 2) xs)" 
    by (simp only: suma.simps(2))
  also have "… = 2*a + 2 * suma xs" 
    by (simp only: HI)
  also have "… = 2 * (a + suma xs)" 
    by (simp only: add_mult_distrib2)
  also have "… = 2 * suma (a#xs)" 
    by (simp only: suma.simps(2))
  finally show "suma (map ((*) 2) (a#xs)) = 2 * suma (a#xs)" 
    by simp
qed

(* La demostración simplificada es *)
lemma "sum (map ((*) 2) xs) = 2 * (sum xs)"
proof (induct xs)
  show "sum (map ((*) 2) []) = 2 * (sum [])" by simp
next
  fix a xs
  assume HI: "sum (map ((*) 2) xs) = 2 * (sum xs)"
  have "sum (map ((*) 2) (a#xs)) = sum ((2*a)#(map (λx. 2*x) xs))" 
    by simp
  also have "… = 2*a + sum (map (λx. 2*x) xs)" by simp
  also have "… = 2*a + 2*(sum xs)" using HI by simp
  also have "… = 2*(a + sum xs)" by simp
  also have "… = 2*(sum (a#xs))" by simp
  finally show "sum (map ((*) 2) (a#xs)) = 2*(sum (a#xs))" by simp
qed

text ‹--------------------------------------------------------------- 
  Ejemplo 25. (p. 48) Demostrar que 
     longitud (map f xs) = longitud xs
  -------------------------------------------------------------------›

declare [[show_types]]

(* La demostración detallada es *)
lemma "longitud (map f xs) = longitud xs"
proof (induct xs)
  show "longitud (map f []) = longitud []" 
    by simp
next
  fix a xs
  assume HI: "longitud (map f xs) = longitud xs"
  have "longitud (map f (a#xs)) = longitud (f a # (map f xs))" 
    by (simp only: map.simps(2))
  also have "… = 1 + longitud (map f xs)" 
    by (simp only: longitud.simps(2))
  also have "… = 1 + longitud xs" 
    by (simp only: HI)
  also have "… = longitud (a#xs)" 
    by (simp only: longitud.simps(2))
  finally show "longitud (map f (a#xs)) = longitud (a#xs)" 
    by simp
qed

(* La demostración simplificada es *)
lemma "longitud (map f xs) = longitud xs"
proof (induct xs)
  show "longitud (map f []) = longitud []" by simp
next
  fix a xs
  assume HI: "longitud (map f xs) = longitud xs"
  have "longitud (map f (a#xs)) = longitud (f a # (map f xs))" by simp
  also have "… = 1 + longitud (map f xs)" by simp
  also have "… = 1 + longitud xs" using HI by simp
  also have "… = longitud (a#xs)" by simp
  finally show "longitud (map f (a#xs)) = longitud (a#xs)" by simp
qed

section ‹Referencias›

text ‹
  · J.A. Alonso. "Razonamiento sobre programas" http://goo.gl/R06O3
  · G. Hutton. "Programming in Haskell". Cap. 13 "Reasoning about
    programms". 
  · S. Thompson. "Haskell: the Craft of Functional Programming, 3rd
    Edition. Cap. 8 "Reasoning about programms". 
  · L. Paulson. "ML for the Working Programmer, 2nd Edition". Cap. 6. 
    "Reasoning about functional programs". ›

end