chapter {* R6: Árboles binarios completos *}
theory R6_Arboles_binarios_completos
imports Main
begin
text {*
En esta relación se piden demostraciones automáticas (lo más cortas
posibles). Para ello, en algunos casos es necesario incluir lemas
auxiliares (que se demuestran automáticamente) y usar ejercicios
anteriores.
---------------------------------------------------------------------
Ejercicio 1. Definir el tipo de datos arbol para representar los
árboles binarios que no tienen información ni en los nodos y ni en las
hojas. Por ejemplo, el árbol
·
/ \
/ \
· ·
/ \ / \
· · · ·
se representa por "N (N H H) (N H H)".
---------------------------------------------------------------------
*}
datatype arbol = H | N arbol arbol
value "N (N H H) (N H H) = (N (N H H) (N H H) :: arbol)"
text {*
---------------------------------------------------------------------
Ejercicio 2. Definir la función
hojas :: "arbol => nat"
tal que (hojas a) es el número de hojas del árbol a. Por ejemplo,
hojas (N (N H H) (N H H)) = 4
---------------------------------------------------------------------
*}
fun hojas :: "arbol => nat" where
"hojas t = undefined"
value "hojas (N (N H H) (N H H)) = 4"
text {*
---------------------------------------------------------------------
Ejercicio 4. Definir la función
profundidad :: "arbol => nat"
tal que (profundidad a) es la profundidad del árbol a. Por ejemplo,
profundidad (N (N H H) (N H H)) = 2
---------------------------------------------------------------------
*}
fun profundidad :: "arbol => nat" where
"profundidad t = undefined"
value "profundidad (N (N H H) (N H H)) = 2"
text {*
---------------------------------------------------------------------
Ejercicio 5. Definir la función
abc :: "nat ⇒ arbol"
tal que (abc n) es el árbol binario completo de profundidad n. Por
ejemplo,
abc 3 = N (N (N H H) (N H H)) (N (N H H) (N H H))
---------------------------------------------------------------------
*}
fun abc :: "nat ⇒ arbol" where
"abc 0 = undefined"
value "abc 3 = N (N (N H H) (N H H)) (N (N H H) (N H H))"
text {*
---------------------------------------------------------------------
Ejercicio 6. Un árbol binario a es completo respecto de la medida f si
a es una hoja o bien a es de la forma (N i d) y se cumple que tanto i
como d son árboles binarios completos respecto de f y, además,
f(i) = f(r).
Definir la función
es_abc :: "(arbol => 'a) => arbol => bool
tal que (es_abc f a) se verifica si a es un árbol binario completo
respecto de f.
---------------------------------------------------------------------
*}
fun es_abc :: "(arbol => 'a) => arbol => bool" where
"es_abc f t = undefined"
text {*
---------------------------------------------------------------------
Nota. (size a) es el número de nodos del árbol a. Por ejemplo,
size (N (N H H) (N H H)) = 3
---------------------------------------------------------------------
*}
value "size (N (N H H) (N H H)) = 3"
value "size (N (N (N H H) (N H H)) (N (N H H) (N H H))) = 7"
text {*
---------------------------------------------------------------------
Nota. Tenemos 3 funciones de medida sobre los árboles: número de
hojas, número de nodos y profundidad. A cada una le corresponde un
concepto de completitud. En los siguientes ejercicios demostraremos
que los tres conceptos de completitud son iguales.
---------------------------------------------------------------------
*}
text {*
---------------------------------------------------------------------
Ejercicio 7. Demostrar que un árbol binario a es completo respecto de
la profundidad syss es completo respecto del número de hojas.
---------------------------------------------------------------------
*}
text {*
---------------------------------------------------------------------
Ejercicio 8. Demostrar que un árbol binario a es completo respecto del
número de hojas syss es completo respecto del número de nodos.
---------------------------------------------------------------------
*}
text {*
---------------------------------------------------------------------
Ejercicio 9. Demostrar que un árbol binario a es completo respecto de
la profundidad syss es completo respecto del número de nodos.
---------------------------------------------------------------------
*}
text {*
---------------------------------------------------------------------
Ejercicio 10. Demostrar que (abc n) es un árbol binario completo.
---------------------------------------------------------------------
*}
text {*
---------------------------------------------------------------------
Ejercicio 11. Demostrar que si a es un árbolo binario completo
respecto de la profundidad, entonces a es igual a
(abc (profundidad a)).
---------------------------------------------------------------------
*}
text {*
---------------------------------------------------------------------
Ejercicio 12. Encontrar una medida f tal que (es_abc f) es distinto de
(es_abc size).
---------------------------------------------------------------------
*}
end